Surface-Enhanced, Spatially Offset Raman Spectroscopy (SESORS) in Tissue Analogues

被引:42
作者
Asiala, Steven M. [1 ]
Shand, Neil C. [2 ]
Faulds, Karen [1 ]
Graham, Duncan [1 ]
机构
[1] Univ Strathclyde, Dept Pure & Appl Chem, Technol & Innovat Ctr, 99 George St, Glasgow G1 1RD, Lanark, Scotland
[2] Def Sci & Technol Lab, Salisbury SP4 0JQ, Wilts, England
基金
英国工程与自然科学研究理事会;
关键词
nanoparticles; nanotags; Raman; SORS; tissue analysis; IN-VIVO; SENSITIVITY; BONE;
D O I
10.1021/acsami.7b09197
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface-enhanced, spatially offset Raman spectroscopy (SESORS) combines the remarkable enhancements in sensitivity afforded by surface-enhanced Raman spectroscopy (SERS) with the non-invasive, subsurface sampling capabilities of spatially offset Raman spectroscopy. Taken together, these techniques show great promise for in vivo Raman measurements. Herein, we present a step forward for this technique, demonstrating SESORS through tissue analogues of six known and varied thicknesses, with a large number of distinct spatial offsets, in a backscattering optical geometry. This is accomplished by spin-coating SERS-active nanoparticles (NPs) on glass slides and monitoring the relative spectral contribution from the NPs and tissue sections, respectively, as a function of both the tissue thickness and the spatial offset of the collection probe. The results show that SESORS outperforms SERS alone for this purpose, the NP signal can be attained at tissue thicknesses of >6.75 mm, and greater tissue thicknesses require greater spatial offsets to maximize the NP signal, all with an optical geometry optimized for utility. This demonstration represents a step forward toward the implementation of SESORS for non-invasive, in vivo analysis.
引用
收藏
页码:25488 / 25494
页数:7
相关论文
共 30 条
[1]   Characterization of hotspots in a highly enhancing SERS substrate [J].
Asiala, Steven M. ;
Schultz, Zachary D. .
ANALYST, 2011, 136 (21) :4472-4479
[2]   A small animal Raman instrument for rapid, wide-area, spectroscopic imaging [J].
Bohndiek, Sarah E. ;
Wagadarikar, Ashwin ;
Zavaleta, Cristina L. ;
Van de Sompel, Dominique ;
Garai, Ellis ;
Jokerst, Jesse V. ;
Yazdanfar, Siavash ;
Gambhir, Sanjiv S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (30) :12408-12413
[3]   Capillary flow as the cause of ring stains from dried liquid drops [J].
Deegan, RD ;
Bakajin, O ;
Dupont, TF ;
Huber, G ;
Nagel, SR ;
Witten, TA .
NATURE, 1997, 389 (6653) :827-829
[4]  
Dey P., 2014, P SOC PHOTO-OPT INS
[5]   SERS-based detection of barcoded gold nanoparticle assemblies from within animal tissue [J].
Dey, Priyanka ;
Olds, William ;
Blakey, Idriss ;
Thurecht, Kristofer J. ;
Izake, Emad L. ;
Fredericks, Peter M. .
JOURNAL OF RAMAN SPECTROSCOPY, 2013, 44 (12) :1659-1665
[6]   Actively Targeted In Vivo Multiplex Detection of Intrinsic Cancer Biomarkers Using Biocompatible SERS Nanotags [J].
Dinish, U. S. ;
Balasundaram, Ghayathri ;
Chang, Young-Tae ;
Olivo, Malini .
SCIENTIFIC REPORTS, 2014, 4
[7]   Minimally Invasive Surface-Enhanced Raman Scattering Detection with Depth Profiles Based on a Surface-Enhanced Raman Scattering-Active Acupuncture Needle [J].
Dong, Jian ;
Chen, Qingfeng ;
Rong, Chunhui ;
Li, Danyang ;
Rao, Yanying .
ANALYTICAL CHEMISTRY, 2011, 83 (16) :6191-6195
[8]   Electromagnetic fields around silver nanoparticles and dimers [J].
Hao, E ;
Schatz, GC .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (01) :357-366
[9]   Short-wave infrared excited spatially offset Raman spectroscopy (SORS) for through-barrier detection [J].
Hopkins, Rebecca J. ;
Pelfrey, Suzanne H. ;
Shand, Neil C. .
ANALYST, 2012, 137 (19) :4408-4410
[10]   Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics [J].
Jeong, Sinyoung ;
Kim, Yong-il ;
Kang, Homan ;
Kim, Gunsung ;
Cha, Myeong Geun ;
Chang, Hyejin ;
Jung, Kyung Oh ;
Kim, Young-Hwa ;
Jun, Bong-Hyun ;
Hwang, Do Won ;
Lee, Yun-Sang ;
Youn, Hyewon ;
Lee, Yoon-Sik ;
Kang, Keon Wook ;
Lee, Dong Soo ;
Jeong, Dae Hong .
SCIENTIFIC REPORTS, 2015, 5