Stochastic integration in UMD Banach spaces

被引:142
作者
van Neerven, J. M. A. M.
Veraar, M. C.
Weis, L.
机构
[1] Delft Univ Technol, Delft Inst Appl Math, NL-2600 GA Delft, Netherlands
[2] Tech Univ Karlsruhe, Inst Math 1, D-76128 Karlsruhe, Germany
关键词
stochastic integration in Banach spaces; UMD Banach spaces; cylindrical Brownian motion; gamma-radonifying operators; decoupling inequalities; Burkholder-Davis-Gundy inequalities; martingale representation theorem;
D O I
10.1214/009117906000001006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we construct a theory of stochastic integration of processes with values in L(H, E), where H is a separable Hilbert space and E is a UMD Banach space (i.e., a space in which martingale differences are unconditional). The integrator is an H-cylindrical Brownian motion. Our approach is based on a two-sided L-p-decoupling inequality for UMD spaces due to Garling, which is combined with the theory of stochastic integration of L(H, E)-valued functions introduced recently by two of the authors. We obtain various characterizations of the stochastic integral and prove versions of the Ito isometry, the Burkholder-Davis-Gundy inequalities, and the representation theorem for Brownian martingales.
引用
收藏
页码:1438 / 1478
页数:41
相关论文
共 37 条
[1]  
Belopolskaya YI., 1990, STOCHASTIC EQUATIONS, DOI 10.1007/978-94-009-2215-0
[2]   SOME REMARKS ON BANACH-SPACES IN WHICH MARTINGALE DIFFERENCE-SEQUENCES ARE UNCONDITIONAL [J].
BOURGAIN, J .
ARKIV FOR MATEMATIK, 1983, 21 (02) :163-168
[3]  
BOURGAIN J, 1986, MONOGR TXB PURE APPL, V98, P1
[4]  
Brzeniak Z., 1997, Stoch. Stoch. Rep, V61, P245, DOI [10.1080/17442509708834122, DOI 10.1080/17442509708834122]
[5]   Some remarks on Ito and Stratonovich integration in 2-smooth Banach spaces [J].
Brzezniak, Z .
PROBABILISTIC METHODS IN FLUIDS, PROCEEDINGS, 2003, :48-69
[6]   Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem [J].
Brzezniak, Z ;
van Neerven, J .
STUDIA MATHEMATICA, 2000, 143 (01) :43-74
[7]   STOCHASTIC PARTIAL-DIFFERENTIAL EQUATIONS IN M-TYPE-2 BANACH-SPACES [J].
BRZEZNIAK, Z .
POTENTIAL ANALYSIS, 1995, 4 (01) :1-45
[8]  
Burkholder DL, 2001, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 1, P233, DOI 10.1016/S1874-5849(01)80008-5
[9]  
Chung K. L., 1990, Introduction to Stochastic Integration, V2nd
[10]  
Clément P, 2000, STUD MATH, V138, P135