Generalized matrix Ansatz in the multispecies exclusion process-the partially asymmetric case

被引:15
作者
Arita, Chikashi [1 ]
Ayyer, Arvind [2 ]
Mallick, Kirone [1 ]
Prolhac, Sylvain [3 ,4 ]
机构
[1] CEA, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[2] Univ Calif Davis, Davis, CA 95616 USA
[3] Tech Univ Munich, Zentrum Math, D-8000 Munich, Germany
[4] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
关键词
DIFFUSION; STATES; MODEL;
D O I
10.1088/1751-8113/45/19/195001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate one of the simplest multispecies generalizations of the asymmetric simple exclusion process on a ring. This process has a rich combinatorial spectral structure and a matrix product form for the stationary state. In the totally asymmetric case, operators that conjugate the dynamics of systems with different numbers of species were obtained by the authors and recently reported by Arita et al (2011 J. Phys. A: Math. Theor. 44 335004). The existence of such nontrivial operators was reformulated as a representation problem for a specific quadratic algebra (generalized matrix Ansatz). In this work, we construct the family of representations explicitly for the partially asymmetric case. This solution cannot be obtained by a simple deformation of the totally asymmetric case.
引用
收藏
页数:16
相关论文
共 36 条
  • [21] ON Q-ANALOGUES OF THE QUANTUM HARMONIC-OSCILLATOR AND THE QUANTUM GROUP SU(2)Q
    MACFARLANE, AJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (21): : 4581 - 4588
  • [22] Some exact results for the exclusion process
    Mallick, Kirone
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [23] EVIDENCE FOR A NEW PHASE IN THE DOMANY-KINZEL CELLULAR AUTOMATON
    MARTINS, ML
    DERESENDE, HFV
    TSALLIS, C
    DEMAGALHAES, ACN
    [J]. PHYSICAL REVIEW LETTERS, 1991, 66 (15) : 2045 - 2047
  • [24] NEW FAMILIES OF COMMUTING TRANSFER-MATRICES IN Q-STATE VERTEX MODELS
    PERK, JHH
    SCHULTZ, CL
    [J]. PHYSICS LETTERS A, 1981, 84 (08) : 407 - 410
  • [25] The matrix product solution of the multispecies partially asymmetric exclusion process
    Prolhac, S.
    Evans, M. R.
    Mallick, K.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (16)
  • [26] The asymmetric exclusion process: Comparison of update procedures
    Rajewsky, N
    Santen, L
    Schadschneider, A
    Schreckenberg, M
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (1-2) : 151 - 194
  • [27] ON U(Q)[SU(2)]-SYMMETRICAL DRIVEN DIFFUSION
    SANDOW, S
    SCHUTZ, G
    [J]. EUROPHYSICS LETTERS, 1994, 26 (01): : 7 - 12
  • [28] Schmittmann B., 1995, Phase Transitions and Critical Phenomena, V17
  • [29] EIGENVECTORS OF THE MULTI-COMPONENT GENERALIZATION OF THE 6TH-VERTEX MODEL
    SCHULTZ, CL
    [J]. PHYSICA A, 1983, 122 (1-2): : 71 - 88
  • [30] Duality relations for asymmetric exclusion processes
    Schutz, GM
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1997, 86 (5-6) : 1265 - 1287