On the number of congruence classes of paths

被引:6
作者
Lin, Zhicong [2 ]
Zeng, Jiang [1 ]
机构
[1] Univ Lyon 1, Univ Lyon, Inst Camille Jordan, CNRS,UMR 5208, F-69622 Villeurbanne, France
[2] Lanzhou Univ, Dept Math & Stat, Lanzhou 730000, Peoples R China
关键词
Graph; Graph endomorphisms; Graph homomorphisms; Paths; Lattice paths;
D O I
10.1016/j.disc.2011.12.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P-n denote the undirected path of length n - 1. The cardinality of the set of congruence classes induced by the graph homomorphisms from P-n onto P-k is determined. This settles an open problem of Michels and Knauer [M. A. Michels, U. Knauer, The congruence classes of paths and cycles, Discrete Mathematics, 309 (2009) 5352-5359]. Our result is based on a new proven formula of the number of homomorphisms between paths. (C) 2011 Elsevier BM. All rights reserved.
引用
收藏
页码:1300 / 1307
页数:8
相关论文
共 5 条
  • [1] An algorithm for the number of path homomorphisms
    Arworn, Srichan
    Wojtylak, Piotr
    [J]. DISCRETE MATHEMATICS, 2009, 309 (18) : 5569 - 5573
  • [2] Bondy J. A., 1976, Graduate Texts in Mathematics, V290
  • [3] The congruence classes of paths and cycles
    Michels, Martin A.
    Knauer, Ulrich
    [J]. DISCRETE MATHEMATICS, 2009, 309 (17) : 5352 - 5359
  • [4] Narayana T. V., 1979, LATTICE PATH COMBINA
  • [5] Stanley R.P., 2000, Cambridge Studies in Advanced Mathematics, V1