AFLGuard: Byzantine-robust Asynchronous Federated Learning

被引:6
|
作者
Fang, Minghong [1 ]
Liu, Jia [1 ]
Gong, Neil Zhenqiang [2 ]
Bentley, Elizabeth S. [3 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
[2] Duke Univ, Durham, NC USA
[3] Air Force Res Lab, Rome, NY USA
关键词
Federated Learning; Poisoning Attacks; Byzantine Robustness;
D O I
10.1145/3564625.3567991
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) is an emerging machine learning paradigm, in which clients jointly learn a model with the help of a cloud server. A fundamental challenge of FL is that the clients are often heterogeneous, e.g., they have different computing powers, and thus the clients may send model updates to the server with substantially different delays. Asynchronous FL aims to address this challenge by enabling the server to update the model once any client's model update reaches it without waiting for other clients' model updates. However, like synchronous FL, asynchronous FL is also vulnerable to poisoning attacks, in which malicious clients manipulate the model via poisoning their local data and/or model updates sent to the server. Byzantine-robust FL aims to defend against poisoning attacks. In particular, Byzantine-robust FL can learn an accurate model even if some clients are malicious and have Byzantine behaviors. However, most existing studies on Byzantine-robust FL focused on synchronous FL, leaving asynchronous FL largely unexplored. In this work, we bridge this gap by proposing AFLGuard, a Byzantine-robust asynchronous FL method. We show that, both theoretically and empirically, AFLGuard is robust against various existing and adaptive poisoning attacks (both untargeted and targeted). Moreover, AFLGuard outperforms existing Byzantine-robust asynchronous FL methods.
引用
收藏
页码:632 / 646
页数:15
相关论文
共 50 条
  • [41] Efficient Byzantine-Robust and Privacy-Preserving Federated Learning on Compressive Domain
    Hu, Guiqiang
    Li, Hongwei
    Fan, Wenshu
    Zhang, Yushu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (04): : 7116 - 7127
  • [42] Byzantine-Robust Federated Learning via Server-Side Mixtue of Experts
    Li, Jing (lj@ustc.edu.cn), 1600, Springer Science and Business Media Deutschland GmbH (14326 LNAI):
  • [43] Privacy-Preserving Byzantine-Robust Federated Learning via Blockchain Systems
    Miao, Yinbin
    Liu, Ziteng
    Li, Hongwei
    Choo, Kim-Kwang Raymond
    Deng, Robert H.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 2848 - 2861
  • [44] Privacy-Preserving Byzantine-Robust Federated Learning via Blockchain Systems
    Miao, Yinbin
    Liu, Ziteng
    Li, Hongwei
    Choo, Kim-Kwang Raymond
    Deng, Robert H.
    IEEE Transactions on Information Forensics and Security, 2022, 17 : 2848 - 2861
  • [45] AFL: Attention-based Byzantine-robust Federated Learning with Vector Filter
    Chen, Hao
    Lv, Xixiang
    Zheng, Wei
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 595 - 600
  • [46] FedAegis: Edge-Based Byzantine-Robust Federated Learning for Heterogeneous Data
    Zhou, Fangtong
    Yu, Ruozhou
    Li, Zhouyu
    Gu, Huayue
    Wang, Xiaojian
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3005 - 3010
  • [47] Defense against local model poisoning attacks to byzantine-robust federated learning
    Lu, Shiwei
    Li, Ruihu
    Chen, Xuan
    Ma, Yuena
    FRONTIERS OF COMPUTER SCIENCE, 2022, 16 (06)
  • [48] Defense against local model poisoning attacks to byzantine-robust federated learning
    LU Shiwei
    LI Ruihu
    CHEN Xuan
    MA Yuena
    Frontiers of Computer Science, 2022, 16 (06)
  • [49] Byzantine-Robust Compressed and Momentum-based Variance Reduction in Federated Learning
    Mao, Sihan
    Zhang, Jianguang
    Hu, Xiaodong
    Zheng, Xiaolin
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 814 - 820
  • [50] BYZANTINE-ROBUST FEDERATED DEEP DETERMINISTIC POLICY GRADIENT
    Lin, Qifeng
    Ling, Qing
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4013 - 4017