Harnack's inequality for a class of non-divergent equations in the Heisenberg group

被引:8
作者
Abedin, Farhan [1 ]
Gutierrez, Cristian E. [1 ]
Tralli, Giulio [2 ]
机构
[1] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
[2] Sapienza Univ Roma, Dipartimento Matemat, Rome, Italy
基金
美国国家科学基金会;
关键词
Apriori estimates; subelliptic equations; symplectic matrices; CARNOT GROUPS; FORM; PRINCIPLES; MAXIMUM;
D O I
10.1080/03605302.2017.1384836
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an invariant Harnack's inequality for operators in non-divergence form structured on Heisenberg vector fields when the coecient matrix is uniformly positive definite, continuous, and symplectic. The method consists in constructing appropriate barriers to obtain pointwise-to-measure estimates for supersolutions in small balls, and then invoking the axiomatic approach developed by Di Fazio, Gutierrez, and Lanconelli to obtain Harnack's inequality.
引用
收藏
页码:1644 / 1658
页数:15
相关论文
共 27 条
[21]  
Krylov N. V., 1980, IZV AKAD NAUK SSSR M, V44, P161
[22]  
Lanconelli E., 1997, Rend. Mat. Appl. (7), V17, P659
[23]   Harnack inequality for a subelliptic PDE in nondivergence form [J].
Montanari, Annamaria .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 109 :285-300
[24]  
[Назаров Александр Ильич Nazarov Aleksandr Il'ich], 2009, [Алгебра и анализ, Algebra i analiz], V21, P174
[25]  
Serrin J., 1954, Journal dAnalyse Mathmatique, V4, P292, DOI [10.1007/BF02787725, DOI 10.1007/BF02787725]
[26]   A certain critical density property for invariant Hamack inequalities in H-type groups [J].
Tralli, Giulio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (02) :461-474