A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids

被引:11
作者
Wheeler, Mary F. [1 ]
Xue, Guangri [1 ]
Yotov, Ivan [2 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS) | 2011年 / 4卷
基金
美国国家科学基金会;
关键词
mixed finite element; multipoint flux approximation; cell-centered finite difference; full tensor; simplices; quadrilaterals; hexahedra; triangular prisms; QUADRILATERAL GRIDS; APPROXIMATIONS; DISCRETIZATION; CONVERGENCE; MEDIA; FLOW;
D O I
10.1016/j.procs.2011.04.097
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since they are developed within a variational framework as mixed finite element methods with special approximating spaces and quadrature rules. The latter allows for local flux elimination giving a cell-centered system for the scalar variable. We study two versions of the method: with a symmetric quadrature rule on smooth grids and a non-symmetric quadrature rule on rough grids. Theoretical and numerical results demonstrate first order convergence for problems with full-tensor coefficients. Second order superconvergence is observed on smooth grids.
引用
收藏
页码:918 / 927
页数:10
相关论文
共 50 条
  • [31] Mixed finite element-finite volume methods
    Zine Dine, Khadija
    Achtaich, Naceur
    Chagdali, Mohamed
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (03) : 385 - 410
  • [32] A posteriori error estimates for mixed finite element and finite volume methods for problems coupled through a boundary with nonmatching grids
    Arbogast, T.
    Estep, D.
    Sheehan, B.
    Tavener, S.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (04) : 1625 - 1653
  • [33] Finite element methods for semilinear elliptic and parabolic interface problems
    Sinha, Rajen K.
    Deka, Bhupen
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (08) : 1870 - 1883
  • [34] Mixed finite element methods on nonmatching multiblock grids
    Arbogast, T
    Cowsar, LC
    Wheeler, MF
    Yotov, I
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) : 1295 - 1315
  • [35] ROBUST AND EFFICIENT MIXED HYBRID DISCONTINUOUS FINITE ELEMENT METHODS FOR ELLIPTIC INTERFACE PROBLEMS
    Zhu, Jiang
    Vargas Poblete, Hector Andres
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (05) : 767 - 788
  • [36] Extrapolation for the second order elliptic problems by mixed finite element methods in three dimensions
    Xie, Hehu
    Jla, Shanghui
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2008, 5 (01) : 112 - 131
  • [37] CONVERGENCE OF THE MULTIPOINT FLUX APPROXIMATION L-METHOD ON GENERAL GRIDS
    Stephansen, Annette F.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) : 3163 - 3187
  • [38] An online generalized multiscale approximation of the multipoint flux mixed finite element method
    He, Zhengkang
    Chen, Jie
    Chen, Zhangxin
    Zhang, Tong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 437
  • [39] A NEW MIXED FINITE ELEMENT AND ITS RELATED FINITE VOLUME DISCRETIZATION ON GENERAL HEXAHEDRAL GRIDS
    Matringe, Sebastien F.
    Juanes, Ruben
    Tchelepi, Hamdi A.
    IMECE 2008: MECHANICS OF SOLIDS, STRUCTURES AND FLUIDS, VOL 12, 2009, : 77 - 87
  • [40] HIGHER-ORDER FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS WITH INTERFACES
    Guzman, Johnny
    Sanchez, Manuel A.
    Sarkis, Marcus
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (05): : 1561 - 1583