A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids

被引:11
作者
Wheeler, Mary F. [1 ]
Xue, Guangri [1 ]
Yotov, Ivan [2 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS) | 2011年 / 4卷
基金
美国国家科学基金会;
关键词
mixed finite element; multipoint flux approximation; cell-centered finite difference; full tensor; simplices; quadrilaterals; hexahedra; triangular prisms; QUADRILATERAL GRIDS; APPROXIMATIONS; DISCRETIZATION; CONVERGENCE; MEDIA; FLOW;
D O I
10.1016/j.procs.2011.04.097
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since they are developed within a variational framework as mixed finite element methods with special approximating spaces and quadrature rules. The latter allows for local flux elimination giving a cell-centered system for the scalar variable. We study two versions of the method: with a symmetric quadrature rule on smooth grids and a non-symmetric quadrature rule on rough grids. Theoretical and numerical results demonstrate first order convergence for problems with full-tensor coefficients. Second order superconvergence is observed on smooth grids.
引用
收藏
页码:918 / 927
页数:10
相关论文
共 50 条
  • [21] Higher order multipoint flux mixed finite element methods for parabolic equation
    Liu, Guoliang
    Xu, Wenwen
    Li, Xindong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 189 : 144 - 160
  • [22] Residual-based a posteriori error estimation for multipoint flux mixed finite element methods
    Du, Shaohong
    Sun, Shuyu
    Xie, Xiaoping
    NUMERISCHE MATHEMATIK, 2016, 134 (01) : 197 - 222
  • [23] A multipoint flux mixed finite element method for the compressible Darcy-Forchheimer models
    Xu, Wenwen
    Liang, Dong
    Rui, Hongxing
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 315 : 259 - 277
  • [24] ON A SECOND-ORDER MULTIPOINT FLUX MIXED FINITE ELEMENT METHODS ON HYBRID MESHES
    Egger, Herbert
    Radu, Bogdan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (03) : 1822 - 1844
  • [25] EXPANDED MIXED FINITE ELEMENT DOMAIN DECOMPOSITION METHODS ON TRIANGULAR GRIDS
    Arraras, Andres
    Portero, Laura
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2014, 11 (02) : 255 - 270
  • [26] Error analysis of multipoint flux domain decomposition methods for evolutionary diffusion problems
    Arraras, A.
    Portero, L.
    Yotov, I.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 : 1321 - 1351
  • [27] Multigrid on the interface for mortar mixed finite element methods for elliptic problems
    Wheeler, MF
    Yotov, I
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 184 (2-4) : 287 - 302
  • [28] Couplings of mixed finite element and weak Galerkin methods for elliptic problems
    Yang M.
    J. Appl. Math. Comp., 1-2 (327-343): : 327 - 343
  • [29] Adaptive Bilinear Element Finite Volume Methods for Second-Order Elliptic Problems on Nonmatching Grids
    Chen, Yanli
    Li, Yonghai
    Sheng, Zhiqiang
    Yuan, Guangwei
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 64 (01) : 130 - 150
  • [30] A coupled multipoint stress-multipoint flux mixed finite element method for the Biot system of poroelasticity
    Ambartsumyan, Ilona
    Khattatov, Eldar
    Yotov, Ivan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 372