A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids

被引:11
作者
Wheeler, Mary F. [1 ]
Xue, Guangri [1 ]
Yotov, Ivan [2 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS) | 2011年 / 4卷
基金
美国国家科学基金会;
关键词
mixed finite element; multipoint flux approximation; cell-centered finite difference; full tensor; simplices; quadrilaterals; hexahedra; triangular prisms; QUADRILATERAL GRIDS; APPROXIMATIONS; DISCRETIZATION; CONVERGENCE; MEDIA; FLOW;
D O I
10.1016/j.procs.2011.04.097
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since they are developed within a variational framework as mixed finite element methods with special approximating spaces and quadrature rules. The latter allows for local flux elimination giving a cell-centered system for the scalar variable. We study two versions of the method: with a symmetric quadrature rule on smooth grids and a non-symmetric quadrature rule on rough grids. Theoretical and numerical results demonstrate first order convergence for problems with full-tensor coefficients. Second order superconvergence is observed on smooth grids.
引用
收藏
页码:918 / 927
页数:10
相关论文
共 50 条
  • [1] A MULTISCALE MORTAR MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD
    Wheeler, Mary Fanett
    Xue, Guangri
    Yotov, Ivan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (04): : 759 - 796
  • [2] A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD ON HEXAHEDRA
    Ingram, Ross
    Wheeler, Mary F.
    Yotov, Ivan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (04) : 1281 - 1312
  • [3] Flux-mortar mixed finite element methods with multipoint flux approximation
    Boon, Wietse M.
    Glaeser, Dennis
    Helmig, Rainer
    Yotov, Ivan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 405
  • [4] LOCAL VELOCITY POSTPROCESSING FOR MULTIPOINT FLUX METHODS ON GENERAL HEXAHEDRA
    Wheeler, Mary
    Xue, Guangri
    Yotov, Ivan
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2012, 9 (03) : 607 - 627
  • [5] Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity
    Wheeler, Mary
    Xue, Guangri
    Yotov, Ivan
    COMPUTATIONAL GEOSCIENCES, 2014, 18 (01) : 57 - 75
  • [6] Multipoint flux mixed finite element methods for slightly compressible flow in porous media
    Arraras, A.
    Portero, L.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (06) : 1437 - 1452
  • [7] Higher order multipoint flux mixed finite element methods on quadrilaterals and hexahedra
    Ambartsumyan, Ilona
    Khattatov, Eldar
    Lee, Jeonghun J.
    Yotov, Ivan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (06) : 1037 - 1077
  • [8] Mixed finite element methods for general quadrilateral grids
    Kwak, Do Y.
    Pyo, Hyun Chan
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (14) : 6556 - 6565
  • [9] A multipoint flux mixed finite element method
    Wheeler, Mary F.
    Yotov, Ivan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) : 2082 - 2106
  • [10] A MULTIPOINT STRESS MIXED FINITE ELEMENT METHOD FOR ELASTICITY ON SIMPLICIAL GRIDS
    Ambartsumyan, Ilona
    Khattatov, Eldar
    Nordbotten, Jan M.
    Yotov, Ivan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 630 - 656