Dimensions of Invariant Measures for Continuous Random Dynamical Systems

被引:0
|
作者
Bielaczyc, Tomasz [1 ]
Horbacz, Katarzyna [1 ]
机构
[1] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014) | 2015年 / 1648卷
关键词
Dynamical systems; invariant measure; Hausdorff dimension; HAUSDORFF DIMENSION;
D O I
10.1063/1.4913080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider continuous random dynamical systems with jumps. We estimate the dimension of the invariant measures and apply the results to a model of stochastic gene expression.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Law of Large Numbers for Random Dynamical Systems
    Katarzyna Horbacz
    Maciej Ślȩczka
    Journal of Statistical Physics, 2016, 162 : 671 - 684
  • [42] Law of Large Numbers for Random Dynamical Systems
    Horbacz, Katarzyna
    Sleczka, Maciej
    JOURNAL OF STATISTICAL PHYSICS, 2016, 162 (03) : 671 - 684
  • [43] Invariant measures for discrete dynamical systems and ergodic properties of generalized Boole-type transformations
    D. Blackmore
    J. Golenia
    A. K. Prykarpatsky
    Ya. A. Prykarpatsky
    Ukrainian Mathematical Journal, 2013, 65 : 47 - 63
  • [44] Invariant measures for discrete dynamical systems and ergodic properties of generalized Boole-type transformations
    Blackmore, D.
    Golenia, J.
    Prykarpatsky, A. K.
    Prykarpatsky, Ya. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (01) : 47 - 63
  • [45] Dimension bounds for invariant measures of bi-Lipschitz iterated function systems
    Anckar, Andreas
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 440 (02) : 853 - 864
  • [46] Additive Invariant Functionals for Dynamical Systems
    A. V. Bobylev
    H. D. Victory
    Journal of Statistical Physics, 1998, 92 : 269 - 299
  • [47] WEIGHTED TOPOLOGICAL ENTROPY OF RANDOM DYNAMICAL SYSTEMS
    Yang, Kexiang
    Chen, Ercai
    Lin, Zijie
    Zhou, Xiaoyao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, : 2688 - 2734
  • [48] A Note on the Relation Between the Metric Entropy and the Generalized Fractal Dimensions of Invariant Measures
    Condori, Alexander
    Carvalho, Silas L.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (02): : 479 - 500
  • [49] A Note on the Relation Between the Metric Entropy and the Generalized Fractal Dimensions of Invariant Measures
    Alexander Condori
    Silas L. Carvalho
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 479 - 500
  • [50] Additive invariant functionals for dynamical systems
    Bobylev, AV
    Victory, HD
    JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (1-2) : 269 - 299