Gene Network Modules-Based Liner Discriminant Analysis of Microarray Gene Expression Data

被引:0
作者
Hu, Pingzhao [1 ]
Bull, Shelley [2 ]
Jiang, Hui [1 ]
机构
[1] York Univ, Dept Comp Sci & Engn, 4700 Keele St, Toronto, ON M3J 1P3, Canada
[2] Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Toronto, ON M5G 1X5, Canada
来源
BIOINFORMATICS RESEARCH AND APPLICATIONS | 2011年 / 6674卷
关键词
Gene network modules; discriminant analysis; correlation-sharing; microarray; CLASS PREDICTION; CLASSIFICATION; TUMOR; PATTERNS; CANCER;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Molecular predictor is a new tool for disease diagnosis, which uses gene expression to classify the diagnostic category of a patient. The statistical challenge for constructing such a predictor is that there are thousands of genes to predict for disease category. but only a small number of samples are available. Here we proposed a gene network modules-based linear discriminant analysis (MLDA) approach by integrating 'essential' correlation structure among genes into the predictor in order that the module or cluster structure of genes, which is related to diagnostic classes we look for, can have potential biological interpretation. We evaluated performance of the new method with other established classification methods using three real data sets. Our results show that the new approach has the advantage of computational simplicity and efficiency with lower classification error rates than the compared methods in most cases.
引用
收藏
页码:286 / +
页数:3
相关论文
共 50 条
[32]   Artificial neural network model for effective cancer classification using microarray gene expression data [J].
Ashok Kumar Dwivedi .
Neural Computing and Applications, 2018, 29 :1545-1554
[33]   A multi-objective heuristic algorithm for gene expression microarray data classification [J].
Lv, Jia ;
Peng, Qinke ;
Chen, Xiao ;
Sun, Zhi .
EXPERT SYSTEMS WITH APPLICATIONS, 2016, 59 :13-19
[34]   Improved direct LDA and its application to DNA microarray gene expression data [J].
Paliwal, Kuldip K. ;
Sharma, Alok .
PATTERN RECOGNITION LETTERS, 2010, 31 (16) :2489-2492
[35]   Microarray analysis of gene expression in lupus [J].
Crow, MK ;
Wohlgemuth, J .
ARTHRITIS RESEARCH & THERAPY, 2003, 5 (06) :279-287
[36]   Microarray analysis of gene expression in lupus [J].
Mary K Crow ;
Jay Wohlgemuth .
Arthritis Res Ther, 5
[37]   An Agent-Based Clustering Approach for Gene Selection in Gene Expression Microarray [J].
Ramos, Juan ;
Castellanos-Garzon, Jose A. ;
Gonzalez-Briones, Alfonso ;
de Paz, Juan F. ;
Corchado, Juan M. .
INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2017, 9 (01) :1-13
[38]   Microarray Gene Expression Analysis Using Combinatorial Fusion [J].
McMunn-Coffran, Cameron ;
Schweikert, Christina ;
Hsu, D. Frank .
2009 9TH IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING, 2009, :410-414
[39]   Proximity Measures for Clustering Gene Expression Microarray Data: A Validation Methodology and a Comparative Analysis [J].
Jaskowiak, Pablo A. ;
Campello, Ricardo J. G. B. ;
Costa, Ivan G. .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (04) :845-857
[40]   The local maximum clustering method and its application in microarray gene expression data analysis [J].
Wu, XW ;
Chen, YD ;
Brooks, BR ;
Su, YA .
EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2004, 2004 (01) :53-63