Gene Network Modules-Based Liner Discriminant Analysis of Microarray Gene Expression Data

被引:0
|
作者
Hu, Pingzhao [1 ]
Bull, Shelley [2 ]
Jiang, Hui [1 ]
机构
[1] York Univ, Dept Comp Sci & Engn, 4700 Keele St, Toronto, ON M3J 1P3, Canada
[2] Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Toronto, ON M5G 1X5, Canada
来源
BIOINFORMATICS RESEARCH AND APPLICATIONS | 2011年 / 6674卷
关键词
Gene network modules; discriminant analysis; correlation-sharing; microarray; CLASS PREDICTION; CLASSIFICATION; TUMOR; PATTERNS; CANCER;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Molecular predictor is a new tool for disease diagnosis, which uses gene expression to classify the diagnostic category of a patient. The statistical challenge for constructing such a predictor is that there are thousands of genes to predict for disease category. but only a small number of samples are available. Here we proposed a gene network modules-based linear discriminant analysis (MLDA) approach by integrating 'essential' correlation structure among genes into the predictor in order that the module or cluster structure of genes, which is related to diagnostic classes we look for, can have potential biological interpretation. We evaluated performance of the new method with other established classification methods using three real data sets. Our results show that the new approach has the advantage of computational simplicity and efficiency with lower classification error rates than the compared methods in most cases.
引用
收藏
页码:286 / +
页数:3
相关论文
共 50 条
  • [21] Gene expression (microarray) data analysis by chemometric methods
    Zhu, David X.
    Goeke, Richard J.
    Baker, David L.
    Hamburg, James H.
    Booth, David E.
    Booth, Stephane E.
    CURRENT ANALYTICAL CHEMISTRY, 2007, 3 (03) : 233 - 237
  • [22] Multichannel image analysis of microarray gene expression data
    Ding, YH
    Fairley, JA
    Gardner, AB
    Simeonova, P
    Vachtsevanos, G
    PROCEEDINGS OF THE SECOND IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, 2004, : 365 - 369
  • [23] Information theory in the analysis of gene expression microarray data
    Pedro Cano
    Nature Genetics, 2001, 27 (Suppl 4) : 45 - 45
  • [24] Statistical design and the analysis of gene expression microarray data
    Kerr, MK
    Churchill, GA
    GENETICAL RESEARCH, 2001, 77 (02) : 123 - 128
  • [25] Analysis of Imputation Algorithms for Microarray Gene Expression Data
    Shashirekha, H. L.
    Wani, Agaz Hussain
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2015, : 589 - 593
  • [26] Gene-Expression Profiles in Generalized Aggressive Periodontitis: A Gene Network-Based Microarray Analysis
    Guzeldemir-Akcakanat, Esra
    Sunnetci-Akkoyunlu, Deniz
    Orucguney, Begum
    Cine, Naci
    Kan, Bahadir
    Yilmaz, Elif Busra
    Gumuslu, Esen
    Savli, Hakan
    JOURNAL OF PERIODONTOLOGY, 2016, 87 (01) : 58 - 65
  • [27] Gene function analysis in osteosarcoma based on microarray gene expression profiling
    Zhao, Liang
    Zhang, Jinghua
    Tan, Hongyu
    Wang, Weidong
    Liu, Yilin
    Song, Ruipeng
    Wang, Limin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2015, 8 (07): : 10401 - U1667
  • [28] Identification of glioblastoma gene prognosis modules based on weighted gene co-expression network analysis
    Pengfei Xu
    Jian Yang
    Junhui Liu
    Xue Yang
    Jianming Liao
    Fanen Yuan
    Yang Xu
    Baohui Liu
    Qianxue Chen
    BMC Medical Genomics, 11
  • [29] Kernel based nonlinear dimensionality reduction for microarray gene expression data analysis
    Li, Xuehua
    Shu, Lan
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (04) : 7644 - 7650
  • [30] Model-based cluster analysis of microarray gene-expression data
    Wei Pan
    Jizhen Lin
    Chap T Le
    Genome Biology, 3 (2)