Gene Network Modules-Based Liner Discriminant Analysis of Microarray Gene Expression Data

被引:0
|
作者
Hu, Pingzhao [1 ]
Bull, Shelley [2 ]
Jiang, Hui [1 ]
机构
[1] York Univ, Dept Comp Sci & Engn, 4700 Keele St, Toronto, ON M3J 1P3, Canada
[2] Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Toronto, ON M5G 1X5, Canada
来源
BIOINFORMATICS RESEARCH AND APPLICATIONS | 2011年 / 6674卷
关键词
Gene network modules; discriminant analysis; correlation-sharing; microarray; CLASS PREDICTION; CLASSIFICATION; TUMOR; PATTERNS; CANCER;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Molecular predictor is a new tool for disease diagnosis, which uses gene expression to classify the diagnostic category of a patient. The statistical challenge for constructing such a predictor is that there are thousands of genes to predict for disease category. but only a small number of samples are available. Here we proposed a gene network modules-based linear discriminant analysis (MLDA) approach by integrating 'essential' correlation structure among genes into the predictor in order that the module or cluster structure of genes, which is related to diagnostic classes we look for, can have potential biological interpretation. We evaluated performance of the new method with other established classification methods using three real data sets. Our results show that the new approach has the advantage of computational simplicity and efficiency with lower classification error rates than the compared methods in most cases.
引用
收藏
页码:286 / +
页数:3
相关论文
共 50 条
  • [1] Learning microarray gene expression data by hybrid discriminant analysis
    Lu, Yijuan
    Tian, Qi
    Sanchez, Maribel
    Neary, Jennifer
    Liu, Feng
    Wang, Yufeng
    IEEE MULTIMEDIA, 2007, 14 (04) : 22 - 31
  • [2] Analysis of microarray gene expression data
    Pham, Tuan D.
    Wells, Christine
    Crane, Denis I.
    CURRENT BIOINFORMATICS, 2006, 1 (01) : 37 - 53
  • [3] Microarray gene expression data analysis
    Vachtsevanos, G
    Ding, YH
    Fairley, JA
    Gardner, AB
    Simeonova, P
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 105 - 108
  • [4] Independent component analysis: Mining microarray data for fundamental human gene expression modules
    Engreitz, Jesse M.
    Daigle, Bernie J., Jr.
    Marshall, Jonathan J.
    Altman, Russ B.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2010, 43 (06) : 932 - 944
  • [5] Spatial clustering based gene selection for gene expression analysis in microarray data classification
    Dhas, P. Edwin
    Lalitha, S.
    Govindaraj, Annalakshmi
    Jyoshna, B.
    AUTOMATIKA, 2024, 65 (01) : 152 - 158
  • [6] Analysis of variance for gene expression microarray data
    Kerr, MK
    Martin, M
    Churchill, GA
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (06) : 819 - 837
  • [7] Microarray Data Analysis of Gene Expression Evolution
    Lin, Honghuang
    GENE REGULATION AND SYSTEMS BIOLOGY, 2009, 3 : 211 - 214
  • [9] Network based analysis of microarray gene expression profiles in response to electroacupuncture
    Mohammadnejad, Afsaneh
    Li, Shuxia
    Duan, Hongmei
    Tan, Qihua
    JOURNAL OF TRADITIONAL AND COMPLEMENTARY MEDICINE, 2020, 10 (05): : 471 - 477
  • [10] Feature Selection in Microarray Gene Expression Data Using Fisher Discriminant Ratio
    Sarbazi-Azad, Saeed
    Abadeh, Mohammad Saniee
    Abadi, Mehdi Irannejad Najaf
    2018 8TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2018, : 225 - 230