Photocatalytic Synthesis of Oxidized Graphite Enabled by Grey TiO2 and Direct Formation of a Visible-Light-Active Titania/Graphene Oxide Nanocomposite

被引:11
作者
Nasir, Amara [1 ,2 ]
Mazare, Anca [2 ,3 ]
Zhou, Xin [2 ]
Qin, Shanshan [2 ]
Denisov, Nikita [2 ]
Zdrazil, Lukas [4 ,5 ]
Kment, Stepan [4 ,6 ]
Zboril, Radek [4 ,6 ]
Yasin, Tariq [1 ]
Schmuki, Patrik [2 ,4 ,7 ]
机构
[1] Pakistan Inst Engn & Appl Sci PIEAS, Islamabad 45650, Pakistan
[2] Friedrich Alexander Univ Erlangen Nurnberg, Dept Mat Sci WW4 LKO, Martensstr 7, D-91058 Erlangen, Germany
[3] Tohoku Univ, Natl Univ Corp, Adv Inst Mat Res AIMR, Sendai, Miyagi 9808577, Japan
[4] Palacky Univ, Czech Adv Technol & Res Inst, Reg Ctr Adv Technol & Mat, Olomouc 77900, Czech Republic
[5] Palacky Univ, Dept Phys Chem, Fac Sci, Olomouc 71146, Czech Republic
[6] VSB Tech Univ Ostrava, Nanotechnol Ctr, Ctr Energy & Environm Technol CEET, 17 Listopadu 2172-15, Ostrava 70800, Czech Republic
[7] King Abdulaziz Univ, Dept Chem, Fac Sci, POB 80203, Jeddah 21569, Saudi Arabia
关键词
grey TiO2; graphite; graphene oxide; UV illumination; methylene-blue degradation; REDUCED GRAPHENE OXIDE; TIO2-GRAPHENE NANOCOMPOSITES; DEGRADATION; COMPOSITE; HYDROGEN; PHOTODEGRADATION; MINERALIZATION; NANOTUBES; POLLUTANT; OXIDATION;
D O I
10.1002/cptc.202100274
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein we report a one-step, low cost, photocatalytic method for the synthesis of graphene oxide (GO) from commercial graphite using grey TiO2 as a photocatalyst. GO formation is achieved by UV-illumination of a slurry of well-dispersed grey TiO2 and commercial graphite. Light-induced valence-band holes from grey TiO2 then lead to an oxidation and exfoliation of graphite, resulting in the formation of visible-light-active GO. An optimal level of graphite oxidation can be established by controlling the UV illumination time. Moreover, the resulting GO-decorated TiO2 is directly active as a visible-light-active photocatalyst that can, for example, be used for pollution degradation.
引用
收藏
页数:6
相关论文
共 71 条
[1]   Continuous-Flow Photocatalytic Degradation of Organics Using Modified TiO2 Nanocomposites [J].
Ali, Imran ;
Kim, Jong-Oh .
CATALYSTS, 2018, 8 (02)
[2]  
PBAG, 2015, Journal of Nanomedicine & Nanotechnology, V06, DOI [10.4172/2157-7439.1000253, 10.4172/2157-7439.1000253, DOI 10.4172/2157-7439.1000253]
[3]   Heterostructure Device Based on Graphene Oxide/TiO2/n-Si for Optoelectronic Applications [J].
Ashery, A. ;
Gad, S. A. ;
Shaban, H. ;
Gaballah, A. E. H. .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2021, 10 (02)
[4]   Graphene-Based Nanomaterials for Biomedical, Catalytic, and Energy Applications [J].
Basak, Soumyadeep ;
Packirisamy, Gopinath .
CHEMISTRYSELECT, 2021, 6 (36) :9669-9683
[5]   Ternary Pt@TiO2/rGO Nanocomposite to Boost Photocatalytic Activity for Environmental and Energy Use [J].
Ben Saber, Nesrine ;
Mezni, Amine ;
Alrooqi, Arwa ;
Altalhi, Tariq .
JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2021, 31 (09) :3802-3809
[6]   Ultrafast Graphene Oxide Humidity Sensors [J].
Borini, Stefano ;
White, Richard ;
Wei, Di ;
Astley, Michael ;
Haque, Samiul ;
Spigone, Elisabetta ;
Harris, Nadine ;
Kivioja, Jani ;
Ryhanen, Tapani .
ACS NANO, 2013, 7 (12) :11166-11173
[7]   Investigation of InAlN Layers Surface Reactivity after Thermal Annealings: A Complete XPS Study for HEMT [J].
Bourlier, Y. ;
Bouttemy, M. ;
Patard, Olivier ;
Gamarra, Piero ;
Piotrowicz, S. ;
Vigneron, J. ;
Aubry, R. ;
Delage, S. ;
Etcheberry, A. .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2018, 7 (06) :P329-P338
[8]   Graphene Oxide as a Multifunctional Platform for Intracellular Delivery, Imaging, and Cancer Sensing [J].
Campbell, E. ;
Hasan, Md. Tanvir ;
Pho, Christine ;
Callaghan, K. ;
Akkaraju, G. R. ;
Naumov, A. V. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[9]   Synthesis of Visible-Light Responsive Graphene Oxide/TiO2 Composites with p/n Heterojunction [J].
Chen, Chao ;
Cai, Weimin ;
Long, Mingce ;
Zhou, Baoxue ;
Wu, Yahui ;
Wu, Deyong ;
Feng, Yujie .
ACS NANO, 2010, 4 (11) :6425-6432
[10]   Monolayer graphene from graphite oxide [J].
Dideykin, A. ;
Aleksenskiy, A. E. ;
Kirilenko, D. ;
Brunkov, P. ;
Goncharov, V. ;
Baidakova, M. ;
Sakseev, D. ;
Vul', A. Ya. .
DIAMOND AND RELATED MATERIALS, 2011, 20 (02) :105-108