Use of Sb spray for improved performance of InAs/GaAs quantum dots for novel photovoltaic structures

被引:6
作者
Bremner, Stephen P. [1 ]
Nataraj, Latha [1 ]
Cloutier, Sylvain G. [1 ]
Weiland, Conan [2 ]
Pancholi, Anup [2 ]
Opila, Robert [2 ]
机构
[1] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
[2] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
关键词
Photoluminescence; Quantum dots; Antimony; Intermediate band; Hot carrier; MOLECULAR-BEAM EPITAXY; OPTICAL-PROPERTIES; MU-M; LAYER; PHOTOLUMINESCENCE; SURFACTANT; DEPENDENCE; INTERFACE; LASERS;
D O I
10.1016/j.solmat.2011.01.026
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Photoluminescence output from InAs/GaAs quantum dots has been improved by a Sb treatment immediately prior to capping with GaAs. Spectra taken at 300 and 80 K show a significant increase in output intensity when the quantum dots are exposed for 15 s under a Sb flux of approximately 0.1 monolayers per second, but this improvement is lost when the Sb exposure is extended to 30 s. There is no significant shift in the emission energies between samples indicating strain relief due to the cap layer is not responsible for the improvement. Analysis of temperature dependent photoluminescence taken between 80 and 300 K show increased activation energies at lower temperatures when an Sb spray is used, suggesting passivation of deep defect levels. For the higher temperature activation energy, corresponding to carrier escape from the QD to the barrier, whilst a 15 s Sb spray gives a substantial increase, the longer 30 s Sb spray sees the activation energy decrease, a result deduced to be due to Sb segregation providing shallow defect levels. A band structure including a very thin GaAsSb layer adjacent to the quantum dots is used to explain these results, with the 30 s Sb spray leading to shallow Sb segregation related defects and a lower activation energy. Depth dependent X-ray photoelectron spectroscopy data support the band structure proposed to explain the photoluminescence results and also reveals the highest concentration of Sb at the sample surface suggesting a 'floating layer' of Sb during growth of the GaAs cap. Some of the implications of these results, for growth of quantum dot samples and for two novel solar cell proposals, the intermediate band and hot carrier solar cells, are discussed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1665 / 1670
页数:6
相关论文
共 24 条
[1]   Strong photoluminescence and laser operation of InAs quantum dots covered by a GaAsSb strain-reducing layer [J].
Akahane, K ;
Yamamoto, N ;
Gozu, S ;
Ohtani, N .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 26 (1-4) :395-399
[2]   MULTIDIMENSIONAL QUANTUM WELL LASER AND TEMPERATURE-DEPENDENCE OF ITS THRESHOLD CURRENT [J].
ARAKAWA, Y ;
SAKAKI, H .
APPLIED PHYSICS LETTERS, 1982, 40 (11) :939-941
[3]   Limiting efficiency of an intermediate band solar cell under a terrestrial spectrum [J].
Bremner, Stephen P. ;
Levy, Michael Y. ;
Honsberg, Christiana B. .
APPLIED PHYSICS LETTERS, 2008, 92 (17)
[4]   High density InAs/GaAs quantum dots with enhanced photoluminescence intensity using antimony surfactant-mediated metal organic chemical vapor deposition [J].
Guimard, Denis ;
Nishioka, Masao ;
Tsukamoto, Shiro ;
Arakawa, Yasuhiko .
APPLIED PHYSICS LETTERS, 2006, 89 (18)
[5]   Temperature dependent optical properties of self-organized InAs GaAs quantum dots [J].
Heitz, R ;
Mukhametzhanov, I ;
Madhukar, A ;
Hoffmann, A ;
Bimberg, D .
JOURNAL OF ELECTRONIC MATERIALS, 1999, 28 (05) :520-527
[6]   Temperature dependent photoluminescence of self-organized InAs quantum dots on an InGaAs strain buffer layer grown by MOCVD [J].
Huang, Kun-Fu ;
Lee, Feng-Ming ;
Hu, Chih-Wei ;
Peng, Te-Chin ;
Wu, Meng-Chyi ;
Lin, Chia-Chien .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (06) :H181-H183
[7]   Effect of strain compensation on quantum dot enhanced GaAs solar cells [J].
Hubbard, S. M. ;
Cress, C. D. ;
Bailey, C. G. ;
Raffaelle, R. P. ;
Bailey, S. G. ;
Wilt, D. M. .
APPLIED PHYSICS LETTERS, 2008, 92 (12)
[8]   The quantum dot spectrometer [J].
Jimenez, JL ;
Fonseca, LRC ;
Brady, DJ ;
Leburton, JP ;
Wohlert, DE ;
Cheng, KY .
APPLIED PHYSICS LETTERS, 1997, 71 (24) :3558-3560
[9]   Sb surfactant effect on GaInAs/GaAs highly strained quantum well lasers emitting at 1200 nm range grown by molecular beam epitaxy [J].
Kageyama, T ;
Miyamoto, T ;
Ohta, M ;
Matsuura, T ;
Matsui, Y ;
Furuhata, T ;
Koyama, F .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (01) :44-48
[10]   Sb-surface segregation and the control of compositional abruptness at the GaAsSb/GaAs interface [J].
Kaspi, R ;
Evans, KR .
JOURNAL OF CRYSTAL GROWTH, 1997, 175 :838-843