Statistical approach of weakly nonlinear ablative Rayleigh-Taylor instability

被引:22
|
作者
Garnier, J
Masse, L
机构
[1] Univ Paris 07, Lab Probabil & Modeles Aleatoires, F-75251 Paris, France
[2] Univ Paris 07, Lab Jacques Louis Lions, F-75251 Paris, France
[3] Commiss Energie Atom, Direct Applicat Mil, F-91680 Bruyeres Le Chatel, France
关键词
D O I
10.1063/1.1927542
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A weakly nonlinear model is proposed for the Rayleigh-Taylor instability in presence of ablation and thermal transport. The nonlinear effects for a single-mode disturbance are computed, included the nonlinear correction to the exponential growth of the fundamental modulation. Mode coupling in the spectrum of a multimode disturbance is thoroughly analyzed by a statistical approach. The exponential growth of the linear regime is shown to be reduced by the nonlinear mode coupling. The saturation amplitude is around 0.1 lambda for long wavelengths, but higher for short instable wavelengths in the ablative regime. (C) 2005 American Institute of Physics.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [31] Nonlinear theory of the ablative Rayleigh-Taylor instability -: art. no. 195002
    Sanz, J
    Ramírez, J
    Ramis, R
    Betti, R
    Town, RPJ
    PHYSICAL REVIEW LETTERS, 2002, 89 (19)
  • [32] Nonlinear saturation of the Rayleigh-Taylor instability
    Das, A
    Mahajan, S
    Kaw, P
    Sen, A
    Benkadda, S
    Verga, A
    PHYSICS OF PLASMAS, 1997, 4 (04) : 1018 - 1027
  • [33] NONLINEAR RAYLEIGH-TAYLOR INSTABILITY - COMMENT
    SHIVAMOGGI, BK
    ASTROPHYSICS AND SPACE SCIENCE, 1983, 97 (01) : 221 - 221
  • [34] Effects of ablation velocity on ablative Rayleigh-Taylor instability
    Xin, J.
    Liu, Y.
    Jiang, X.
    Yan, R.
    Li, J.
    Wan, Z. -H.
    Sun, D. -J.
    Zheng, J.
    PHYSICS OF PLASMAS, 2023, 30 (11)
  • [35] NUMERICAL-SIMULATION OF ABLATIVE RAYLEIGH-TAYLOR INSTABILITY
    GARDNER, JH
    BODNER, SE
    DAHLBURG, JP
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (04): : 1070 - 1074
  • [36] NOTE ON NONLINEAR RAYLEIGH-TAYLOR INSTABILITY
    MALIK, SK
    SINGH, M
    ASTROPHYSICS AND SPACE SCIENCE, 1984, 106 (01) : 205 - 206
  • [37] Rayleigh-Taylor Instability in Nonlinear Optics
    Jia, Shu
    Fleischer, Jason W.
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 1429 - 1430
  • [38] Ablative stabilization of the deceleration phase Rayleigh-Taylor instability
    Lobatchev, V
    Betti, R
    PHYSICAL REVIEW LETTERS, 2000, 85 (21) : 4522 - 4525
  • [39] Coupled model analysis of the ablative Rayleigh-Taylor instability
    Kuang, Yuanyuan
    Lu, Yan
    Lin, Zhi
    Yang, Ming
    PLASMA SCIENCE & TECHNOLOGY, 2023, 25 (05)
  • [40] Effect of initial phase on the ablative Rayleigh-Taylor instability
    Kuang, Yuanyuan
    Lu, Yan
    Lin, Zhi
    Yang, Ming
    PHYSICS OF PLASMAS, 2023, 30 (10)