Statistical approach of weakly nonlinear ablative Rayleigh-Taylor instability

被引:22
|
作者
Garnier, J
Masse, L
机构
[1] Univ Paris 07, Lab Probabil & Modeles Aleatoires, F-75251 Paris, France
[2] Univ Paris 07, Lab Jacques Louis Lions, F-75251 Paris, France
[3] Commiss Energie Atom, Direct Applicat Mil, F-91680 Bruyeres Le Chatel, France
关键词
D O I
10.1063/1.1927542
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A weakly nonlinear model is proposed for the Rayleigh-Taylor instability in presence of ablation and thermal transport. The nonlinear effects for a single-mode disturbance are computed, included the nonlinear correction to the exponential growth of the fundamental modulation. Mode coupling in the spectrum of a multimode disturbance is thoroughly analyzed by a statistical approach. The exponential growth of the linear regime is shown to be reduced by the nonlinear mode coupling. The saturation amplitude is around 0.1 lambda for long wavelengths, but higher for short instable wavelengths in the ablative regime. (C) 2005 American Institute of Physics.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [21] Effect of compressibility on ablative Rayleigh-Taylor instability
    Banerjee, Rahul
    INDIAN JOURNAL OF PHYSICS, 2024, 98 (05) : 1761 - 1766
  • [22] ABLATIVE STABILIZATION IN THE INCOMPRESSIBLE RAYLEIGH-TAYLOR INSTABILITY
    KULL, HJ
    ANISIMOV, SI
    PHYSICS OF FLUIDS, 1986, 29 (07) : 2067 - 2075
  • [23] Weak nonlinearity of ablative Rayleigh-Taylor instability
    Fan Zheng-Feng
    Luo Ji-Sheng
    CHINESE PHYSICS LETTERS, 2008, 25 (02) : 624 - 627
  • [24] Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime
    Wang, L. F.
    Ye, W. H.
    Sheng, Z. M.
    Don, Wai-Sun
    Li, Y. J.
    He, X. T.
    PHYSICS OF PLASMAS, 2010, 17 (12)
  • [25] Weakly Nonlinear Rayleigh-Taylor Instability in Incompressible Fluids with Surface Tension
    郭宏宇
    王立锋
    叶文华
    吴俊峰
    张维岩
    Chinese Physics Letters, 2017, (04) : 67 - 70
  • [26] Ablation effects on weakly nonlinear Rayleigh-Taylor instability with a finite bandwidth
    Ikegawa, T
    Nishihara, K
    PHYSICAL REVIEW LETTERS, 2002, 89 (11)
  • [27] Weakly nonlinear incompressible Rayleigh-Taylor instability in spherical and planar geometries
    Zhang, J.
    Wang, L. F.
    Ye, W. H.
    Guo, H. Y.
    Wu, J. F.
    Ding, Y. K.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2018, 25 (02)
  • [28] Harmonic growth of spherical Rayleigh-Taylor instability in weakly nonlinear regime
    Liu, Wanhai
    Chen, Yulian
    Yu, Changping
    Li, Xinliang
    PHYSICS OF PLASMAS, 2015, 22 (11)
  • [29] Weakly Nonlinear Rayleigh-Taylor Instability in Incompressible Fluids with Surface Tension
    Guo, Hong-Yu
    Wang, Li-Feng
    Ye, Wen-Hua
    Wu, Jun-Feng
    Zhang, Wei-Yan
    CHINESE PHYSICS LETTERS, 2017, 34 (04)
  • [30] Weakly Nonlinear Rayleigh-Taylor Instability in Incompressible Fluids with Surface Tension
    郭宏宇
    王立锋
    叶文华
    吴俊峰
    张维岩
    Chinese Physics Letters, 2017, 34 (04) : 67 - 70