Output feedback control using small-gain conditions for stochastic nonlinear systems with SiISS inverse dynamics

被引:30
作者
Duan, Na [1 ,3 ]
Yu, Xin [2 ,3 ]
Xie, Xue-Jun [1 ,3 ]
机构
[1] Xuzhou Normal Univ, Sch Elect Engn & Automat, Xuzhou 221116, Jiangsu Prov, Peoples R China
[2] Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu Prov, Peoples R China
[3] Qufu Normal Univ, Inst Automat, Shandong 273165, Peoples R China
基金
中国国家自然科学基金;
关键词
stochastic nonlinear systems; SiISS inverse dynamics; stochastic LaSalle theorem; small-gain type conditions; output feedback control; LASALLE-TYPE THEOREMS; TO-STATE STABILITY; ISS SYSTEMS; CONTROL DESIGN; STABILIZATION; INPUT; EQUATIONS; IISS;
D O I
10.1080/00207179.2010.539271
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article further discusses output feedback control for stochastic nonlinear systems with stochastic integral input-to-state stability (SiISS) inverse dynamics. Based on the stochastic LaSalle theorem and small-gain type conditions on SiISS, an output feedback controller using the backstepping method is constructively designed to guarantee that all the closed-loop signals are bounded almost surely and the stochastic closed-loop system is globally asymptotically stable in probability.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 40 条
[1]   Stabilization of stochastic nonlinear systems driven by noise of unknown covariance [J].
Deng, H. ;
Krstić, M. ;
Williams, R.J. .
1600, Institute of Electrical and Electronics Engineers Inc. (46)
[4]   Necessary and Sufficient Small Gain Conditions for Integral Input-to-State Stable Systems: A Lyapunov Perspective [J].
Ito, Hiroshi ;
Jiang, Zhong-Ping .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (10) :2389-2404
[5]   A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems [J].
Jiang, ZP ;
Mareels, IMY ;
Wang, Y .
AUTOMATICA, 1996, 32 (08) :1211-1215
[6]   SMALL-GAIN THEOREM FOR ISS SYSTEMS AND APPLICATIONS [J].
JIANG, ZP ;
TEEL, AR ;
PRALY, L .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1994, 7 (02) :95-120
[7]   Inverse optimal stabilization for stochastic nonlinear systems whose linearizations are not stabilizable [J].
Li, Wu-Quan ;
Xie, Xue-Jun .
AUTOMATICA, 2009, 45 (02) :498-503
[8]   Output-feedback stabilization for stochastic nonlinear systems whose linearizations are not stabilizable [J].
Li, Wuquan ;
Jing, Yuanwei ;
Zhang, Siying .
AUTOMATICA, 2010, 46 (04) :752-760
[9]  
Lin ZW, 2008, INT J INNOV COMPUT I, V4, P2295
[10]   State-feedback stabilization for stochastic high-order nonlinear systems with a ratio of odd integers power [J].
Liu, L. ;
Duan, N. .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2010, 15 (01) :39-53