A posteriori error estimates for optimal distributed control governed by the evolution equations

被引:17
作者
Xiong, Chunguang [1 ]
Li, Yuan [2 ]
机构
[1] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
[2] Chinese Peoples Armed Police Forces Acad, Dept Math, Langfang 065000, Hebei, Peoples R China
关键词
Optimal control; Evolution equation; A posteriori error estimate; Method of lines; FEM; FINITE-ELEMENT METHODS; PARTIAL-DIFFERENTIAL-EQUATIONS; OPTIMIZATION PROBLEMS; PARABOLIC EQUATIONS; APPROXIMATION; CONVEX; LINES;
D O I
10.1016/j.apnum.2010.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a technique for a posteriori error estimates suitable to the optimal control problem governed by the evolution equations solved by the method of lines. It is applied to the control problem governed by the parabolic equation, convection-diffusion equation and hyperbolic equation. The error is measured with the aid of the L-2-norm in the space-time cylinder combined with a special time weighted energy norm. Crown Copyright (C) 2010 Published by Elsevier B.V. on behalf of IMACS. All rights reserved.
引用
收藏
页码:181 / 200
页数:20
相关论文
共 25 条
[1]  
Adjerid S., 1991, 911 RENSS POL I DEP
[2]  
Babuska I, 2001, NUMER MATH, V89, P225, DOI 10.1007/s002110100228
[3]  
Babuska I., 1999, POSTERIORI ERROR EST
[4]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[5]   Adaptive finite element methods for optimal control of partial differential equations: Basic concept [J].
Becker, R ;
Kapp, H ;
Rannacher, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) :113-132
[6]  
Becker R., 1998, 9820SFB359 IWR U HEI
[7]  
Beiterman M., 1986, J COMPUT PHYS, V63, P33
[8]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[9]  
ERIKSSON K, 1988, MATH COMPUT, V50, P361, DOI 10.1090/S0025-5718-1988-0929542-X
[10]   ADAPTIVE FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS .1. A LINEAR-MODEL PROBLEM [J].
ERIKSSON, K ;
JOHNSON, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) :43-77