HpGEM - A software framework for discontinuous galerkin finite element methods

被引:21
|
作者
Pesch, Lars [1 ]
Bell, Alexander [1 ]
Sollie, Henk [1 ]
Ambati, Vijaya R. [1 ]
Bokhove, Onno [1 ]
Van der Vegt, Jaap J. W. [1 ]
机构
[1] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2007年 / 33卷 / 04期
关键词
algorithms; design; discontinuous Galerkin methods; PDE; unstructured mesh; object-oriented programming;
D O I
10.1145/1268776.1268778
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
hpGEM, a novel framework for the implementation of discontinuous Galerkin finite element methods (FEMs), is described. We present data structures and methods that are common for many (discontinuous) FEMs and show how we have implemented the components as an object-oriented framework. This framework facilitates and accelerates the implementation of finite element programs, the assessment of algorithms, and their application to real-world problems. The article documents the status of the framework, exemplifies aspects of its philosophy and design, and demonstrates the feasibility of the approach with several application examples.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Discontinuous Galerkin Inspired Framework for Vector Generalized Finite-Element Methods
    Tuncer, Ozgur
    Shanker, Balasubramaniam
    Kempel, Leo C.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (03) : 1339 - 1347
  • [2] COUPLING OF DISCONTINUOUS GALERKIN FINITE ELEMENT AND BOUNDARY ELEMENT METHODS
    Of, G.
    Rodin, G. J.
    Steinbach, O.
    Taus, M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03): : A1659 - A1677
  • [3] Stabilization mechanisms in discontinuous Galerkin finite element methods
    Brezzi, F.
    Cockburn, B.
    Marini, L. D.
    Suli, E.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) : 3293 - 3310
  • [4] Finite element theory on curved domains with applications to discontinuous Galerkin finite element methods
    Kawecki, Ellya L.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (06) : 1492 - 1536
  • [5] Camellia: A software framework for discontinuous Petrov-Galerkin methods
    Roberts, Nathan V.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (11) : 1581 - 1604
  • [6] A comparative study on the weak Galerkin, discontinuous Galerkin, and mixed finite element methods
    Lin, Guang
    Liu, Jiangguo
    Sadre-Marandi, Farrah
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 273 : 346 - 362
  • [7] On the coupling of local discontinuous Galerkin and conforming finite element methods
    Perugia I.
    Schötzau D.
    Journal of Scientific Computing, 2001, 16 (4) : 411 - 433
  • [8] Parallel iterative discontinuous Galerkin finite-element methods
    Aharoni, D
    Barak, A
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 247 - 254
  • [9] Port-Hamiltonian discontinuous Galerkin finite element methods
    Kumar, Nishant
    van der Vegt, J. J. W.
    Zwart, H. J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 45 (01) : 354 - 403
  • [10] DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR NUMERICAL SIMULATIONS OF THERMOELASTICITY
    Hao, Zeng-rong
    Gu, Chun-wei
    Song, Yin
    JOURNAL OF THERMAL STRESSES, 2015, 38 (09) : 983 - 1004