On the solvability of asymptotically linear systems at resonance

被引:1
作者
Chhetri, Maya [1 ]
Girg, Petr [2 ,3 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Greensboro, NC 27402 USA
[2] Univ W Bohemia, Fac Sci Appl, European Ctr Excellence, NTIS, Univ 8, Plzen 30614, Czech Republic
[3] Univ W Bohemia, KMA FAV, Univ 8, CZ-30614 Plzen, Czech Republic
关键词
Elliptic systems; Asymptotically linear; Resonance; Lyapunov-Schmidt method; BOUNDARY-VALUE-PROBLEMS; ELLIPTIC-SYSTEMS; NONLINEAR PERTURBATIONS; EQUATIONS; PART;
D O I
10.1016/j.jmaa.2016.04.066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the solvability of the system -Delta u - nu(1)theta(1)v= f (x, u, v) + h(1)(x) in Omega; -Delta u - nu(1)theta(2)u= f (x, u, v) + h(2)(x) in Omega; u= v = 0 partial derivative Omega; at resonance at the simple eigenvalue vi of the corresponding linear eigenvalue problem. Here Omega subset of R-N (N >= 1) is a bounded domain with C-2,C-eta-boundary partial derivative Omega, eta is an element of (0,1) (a bounded interval if N = 1) and theta(1), theta(2) are positive constants. The nonlinear perturbations f (x, u, v), g(x, u, v) : Omega x R-2 -> R are Caratheodory functions that are sublinear at infinity. We employ the Lyapunov-Schmidt method to provide sufficient conditions on h(1), h(2) is an element of L-r(Omega); r > N, to guarantee the solvability of the system. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:583 / 599
页数:17
相关论文
共 50 条
[41]   Periodic solutions for a fractional asymptotically linear problem [J].
Ambrosio, Vincenzo ;
Bisci, Giovanni Molica .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (03) :593-615
[42]   Linear Differential Systems with Small Coefficients: Various Types of Solvability and their Verification [J].
Barkatou, Moulay A. ;
Gontsov, Renat R. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2019, 15
[43]   Periodic solutions of an asymptotically linear Dirac equation [J].
Ding, Yanheng ;
Liu, Xiaoying .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (02) :717-735
[44]   Nontrivial solutions for an asymptotically linear Δα-Laplace equation [J].
Xu, Jiafa ;
Chen, Jia ;
O'Regan, Donal .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2023, 28 (05) :841-858
[45]   NONTRIVIAL SOLUTIONS FOR ASYMPTOTICALLY LINEAR HAMILTONIAN SYSTEMS WITH LAGRANGIAN BOUNDARY CONDITIONS [J].
刘春根 ;
张清业 .
Acta Mathematica Scientia, 2012, 32 (04) :1545-1558
[46]   Periodic Solutions of Asymptotically Linear Hamiltonian Systems without Twist Conditions [J].
Cheng, Rong ;
Zhang, Dongfeng .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (05) :445-452
[47]   Exponential Dichotomy for Asymptotically Hyperbolic Two-Dimensional Linear Systems [J].
Liu, Weishi ;
Van Vleck, Erik S. .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2010, 22 (04) :697-722
[48]   Ground states for asymptotically linear fractional Schrödinger–Poisson systems [J].
Peng Chen ;
Xiaochun Liu .
Journal of Pseudo-Differential Operators and Applications, 2021, 12
[49]   Asymptotically linear Schrodinger-Poisson systems with potentials vanishing at infinity [J].
Zhu, Hongbo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) :501-510
[50]   SOLVABILITY OF QUASI-LINEAR MULTI-POINT BOUNDARY VALUE PROBLEM AT RESONANCE [J].
Cheung, W. -S. ;
Ren, J. ;
Zhao, D. .
EURASIAN MATHEMATICAL JOURNAL, 2010, 1 (04) :78-94