Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit

被引:149
作者
Schawinski, Kevin [1 ]
Zhang, Ce [2 ]
Zhang, Hantian [2 ]
Fowler, Lucas [1 ]
Santhanam, Gokula Krishnan [2 ]
机构
[1] Swiss Fed Inst Technol, Inst Astron, Dept Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Comp Sci, Syst Grp, Univ Str 6, CH-8006 Zurich, Switzerland
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
methods: data analysis; techniques: image processing; galaxies: general;
D O I
10.1093/mnrasl/slx008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Observations of astrophysical objects such as galaxies are limited by various sources of random and systematic noise from the sky background, the optical system of the telescope and the detector used to record the data. Conventional deconvolution techniques are limited in their ability to recover features in imaging data by the Shannon-Nyquist sampling theorem. Here, we train a generative adversarial network (GAN) on a sample of 4550 images of nearby galaxies at 0.01 < z < 0.02 from the Sloan Digital Sky Survey and conduct 10x cross-validation to evaluate the results. We present a method using a GAN trained on galaxy images that can recover features from artificially degraded images with worse seeing and higher noise than the original with a performance that far exceeds simple deconvolution. The ability to better recover detailed features such as galaxy morphology from low signal to noise and low angular resolution imaging data significantly increases our ability to study existing data sets of astrophysical objects as well as future observations with observatories such as the Large Synoptic Sky Telescope (LSST) and the Hubble and James Webb space telescopes.
引用
收藏
页码:L110 / L114
页数:5
相关论文
共 21 条
[1]   THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III [J].
Alam, Shadab ;
Albareti, Franco D. ;
Allende Prieto, Carlos ;
Anders, F. ;
Anderson, Scott F. ;
Anderton, Timothy ;
Andrews, Brett H. ;
Armengaud, Eric ;
Aubourg, Eric ;
Bailey, Stephen ;
Basu, Sarbani ;
Bautista, Julian E. ;
Beaton, Rachael L. ;
Beers, Timothy C. ;
Bender, Chad F. ;
Berlind, Andreas A. ;
Beutler, Florian ;
Bhardwaj, Vaishali ;
Bird, Jonathan C. ;
Bizyaev, Dmitry ;
Blake, Cullen H. ;
Blanton, Michael R. ;
Blomqvist, Michael ;
Bochanski, John J. ;
Bolton, Adam S. ;
Bovy, Jo ;
Bradley, A. Shelden ;
Brandt, W. N. ;
Brauer, D. E. ;
Brinkmann, J. ;
Brown, Peter J. ;
Brownstein, Joel R. ;
Burden, Angela ;
Burtin, Etienne ;
Busca, Nicolas G. ;
Cai, Zheng ;
Capozzi, Diego ;
Rosell, Aurelio Carnero ;
Carr, Michael A. ;
Carrera, Ricardo ;
Chambers, K. C. ;
Chaplin, William James ;
Chen, Yen-Chi ;
Chiappini, Cristina ;
Chojnowski, S. Drew ;
Chuang, Chia-Hsun ;
Clerc, Nicolas ;
Comparat, Johan ;
Covey, Kevin ;
Croft, Rupert A. C. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2015, 219 (01)
[2]  
[Anonymous], THESIS
[3]  
[Anonymous], 1996, Fund. Cosmic Phys.
[4]  
[Anonymous], ARXIV160505396
[5]  
[Anonymous], 2009, ARXIV09120201 LSST S
[6]  
[Anonymous], ASTRON ASTROPHYS
[7]  
[Anonymous], MEM SOC ASTRON ITAL
[8]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[9]  
Goodfellow I., 2014, NIPS, V2672
[10]  
Laureijs R., 2011, PREPRINT ARXIV111031, Patent No. 11103193