Wavelet descriptor of planar curves: Theory and applications

被引:228
作者
Chuang, GCH
Kuo, CCJ
机构
[1] UNIV SO CALIF, DEPT ELECT ENGN SYST, LOS ANGELES, CA 90089 USA
[2] UNIV SO CALIF, INST SIGNAL & IMAGE PROC, LOS ANGELES, CA 90089 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/83.481671
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
By using the wavelet transform, we develop a hierarchical planar curve descriptor that decomposes a curve into components of different scales so that the coarsest scale components carry the global approximation information while the finer scale components contain the local detailed information, We show that the wavelet descriptor has many desirable properties such as multiresolution representation, invariance, uniqueness, stability, and spatial localization, A deformable wavelet descriptor is also proposed by interpreting the wavelet coefficients as random variables, The applications of the wavelet descriptor to character recognition and model-based contour extraction from low SNR images are examined, Numerical experiments are performed to illustrate the performance of the wavelet descriptor.
引用
收藏
页码:56 / 70
页数:15
相关论文
共 40 条
[1]   MULTIRESOLUTION ELASTIC MATCHING [J].
BAJCSY, R ;
KOVACIC, S .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1989, 46 (01) :1-21
[2]   A BLOCK SPIN CONSTRUCTION OF ONDELETTES .1. LEMARIE FUNCTIONS [J].
BATTLE, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 110 (04) :601-615
[3]   SHAPE REPRESENTATION BY MULTISCALE CONTOUR APPROXIMATION [J].
BENGTSSON, A ;
EKLUNDH, JO .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (01) :85-93
[4]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[5]  
Boor C. D., 1978, PRACTICAL GUIDE SPLI
[6]   HIERARCHICAL CHAMFER MATCHING - A PARAMETRIC EDGE MATCHING ALGORITHM [J].
BORGEFORS, G .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1988, 10 (06) :849-865
[7]  
CHUI CK, 1991, INTRO WAVELETS
[8]  
Cohen Albert, 1992, Wavelets: A Tutorial in Theory and Applications, V2, P123
[9]  
DANIELSSON PE, 1978, COMPUT VISION GRAPH, V7, P292, DOI 10.1016/0146-664X(78)90119-3
[10]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996