Separating sets, metric tangent cone and applications for complex algebraic germs

被引:9
作者
Birbrair, Lev [1 ]
Fernandes, Alexandre [1 ]
Neumann, Walter D. [2 ]
机构
[1] Univ Fed Ceara, Dept Math, BR-60455760 Fortaleza, Ceara, Brazil
[2] Columbia Univ, Barnard Coll, Dept Math, New York, NY 10027 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2010年 / 16卷 / 03期
关键词
Bi-Lipschitz; Isolated complex singularity; SINGULARITIES; GEOMETRY;
D O I
10.1007/s00029-010-0024-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An explanation is given for the initially surprising ubiquity of separating sets in normal complex surface germs. It is shown that they are quite common in higher dimensions too. The relationship between separating sets and the geometry of the metric tangent cone of Bernig and Lytchak is described. Moreover, separating sets are used to show that the inner Lipschitz type need not be constant in a family of normal complex surface germs of constant topology.
引用
收藏
页码:377 / 391
页数:15
相关论文
共 19 条
  • [1] [Anonymous], 1969, GRUNDLEHREN MATH WIS
  • [2] Spaces and Gromov-Hausdorff limits of subanalytic spaces
    Bernig, Andreas
    Lytchak, Alexander
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 : 1 - 15
  • [3] Birbrair L, 2000, COMMUN PUR APPL MATH, V53, P1434, DOI 10.1002/1097-0312(200011)53:11<1434::AID-CPA5>3.3.CO
  • [4] 2-J
  • [5] Birbrair L, 2000, MICH MATH J, V47, P125
  • [6] BIRBRAIR L, SEPARATING SET UNPUB
  • [7] BIRBRAIR L, ARXIV09010030
  • [8] Inner metric geometry of complex algebraic surfaces with isolated singularities
    Birbrair, Lev
    Fernandes, Alexandre
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (11) : 1483 - 1494
  • [9] Bi-Lipschitz geometry of weighted homogeneous surface singularities
    Birbrair, Lev
    Fernandes, Alexandre
    Neumann, Walter D.
    [J]. MATHEMATISCHE ANNALEN, 2008, 342 (01) : 139 - 144
  • [10] Bi-Lipschitz geometry of complex surface singularities
    Birbrair, Lev
    Fernandes, Alexandre
    Neumann, Walter D.
    [J]. GEOMETRIAE DEDICATA, 2009, 139 (01) : 259 - 267