A New Result on Multiplicity of Nontrivial Solutions for the Nonhomogenous Schrodinger-Kirchhoff Type Problem in RN

被引:12
作者
Cheng, Bitao [1 ]
机构
[1] Qujing Normal Univ, Dept Math & Informat Sci, Qujing 655011, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonhomogenous Schrodinger-Kirchhoff type problem; Ekeland's variational principle; mountain Pass Theorem; POSITIVE SOLUTIONS; ELLIPTIC PROBLEMS; EXISTENCE; EQUATIONS; R(N);
D O I
10.1007/s00009-015-0527-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following nonhomogenous Schrodinger-Kirchhoff type problem 0.1 where constants a > 0, b a parts per thousand yen 0, N = 1, 2 or 3, , and . Under more relaxed assumptions on the nonlinear term f that are much weaker than those in Chen and Li (Nonlinear Anal RWA 14:1477-1486, 2013), using some new proof techniques especially the verification of the boundedness of Palais-Smale sequence, a new result on multiplicity of nontrivial solutions for the problem (1.1) is obtained, which sharply improves the known result of Theorem 1.1 in Chen and Li (Nonlinear Anal RWA 14:1477-1486, 2013).
引用
收藏
页码:1099 / 1116
页数:18
相关论文
共 32 条
[1]   A nonlinear superposition principle and multibump solutions of periodic Schrodinger equations [J].
Ackermann, N .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 234 (02) :277-320
[2]   Nonlinear perturbations of a periodic Kirchhoff equation in RN [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2750-2759
[3]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[4]  
[Anonymous], 1883, Mechanik
[5]  
[Anonymous], 1986, C BOARD MATH SCI
[6]   Multiple critical points for a class of nonlinear functionals [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (03) :507-523
[7]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[8]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[9]   Multiple solutions for the nonhomogeneous Kirchhoff equation on RN [J].
Chen, Shang-Jie ;
Li, Lin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) :1477-1486
[10]   Multiple solutions for a class of Kirchhoff type problems with concave nonlinearity [J].
Cheng, Bitao ;
Wu, Xian ;
Liu, Jun .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (05) :521-537