Generalized neighbor-interaction models induced by nonlinear lattices

被引:39
作者
Abdullaev, F. Kh.
Bludov, Yu. V. [1 ]
Dmitriev, S. V. [2 ]
Kevrekidis, P. G. [3 ]
Konotop, V. V. [1 ,4 ]
机构
[1] Univ Lisbon, Ctr Fis Teor & Computac, P-1649003 Lisbon, Portugal
[2] Altai State Univ, Gen Phys Dept, Barnaul 656038, Russia
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[4] Univ Lisbon, Dept Fis, P-1749016 Lisbon, Portugal
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 01期
关键词
D O I
10.1103/PhysRevE.77.016604
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is shown that the tight-binding approximation of the nonlinear Schrodinger equation with a periodic linear potential and periodic in space nonlinearity coefficient gives rise to a number of nonlinear lattices with complex, both linear and nonlinear, neighbor interactions. The obtained lattices present nonstandard possibilities, among which we mention a quasilinear regime, where the pulse dynamics obeys essentially the linear Schrodinger equation. We analyze the properties of such models both in connection to their modulational stability, as well as in regard to the existence and stability of their localized solitary wave solutions.
引用
收藏
页数:13
相关论文
共 56 条
[1]   Gap solitons in Bose-Einstein condensates in linear and nonlinear optical lattices [J].
Abdullaev, Fatkhulla ;
Abdumalikov, Abdulaziz ;
Galimzyanov, Ravil .
PHYSICS LETTERS A, 2007, 367 (1-2) :149-155
[2]   Nonlinear excitations in arrays of Bose-Einstein condensates [J].
Abdullaev, FK ;
Baizakov, BB ;
Darmanyan, SA ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2001, 64 (04) :436061-4360610
[3]  
ABDULLAEV FK, 2002, PROGR OPTICS, V44, P303, DOI DOI 10.1016/S0079-6638(02)80018-X
[4]  
ABDULLAEVF, 2005, PHYS REV A, V72, P4101
[5]   Discrete spatial solitons in a diffraction-managed nonlinear waveguide array: a unified approach [J].
Ablowitz, MJ ;
Musslimani, ZH .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 184 (1-4) :276-303
[6]  
ABLOWITZ MJ, 2004, DISCRETE CONTINUOUS
[7]   On classification of intrinsic localized modes for the discrete nonlinear Schrodinger equation [J].
Alfimov, GL ;
Brazhnyi, VA ;
Konotop, VV .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 194 (1-2) :127-150
[8]   Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, GL ;
Kevrekidis, PG ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[9]   Matter solitons in Bose-Einstein condensates with optical lattices [J].
Alfimov, GL ;
Konotop, VV ;
Salerno, M .
EUROPHYSICS LETTERS, 2002, 58 (01) :7-13
[10]   Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities [J].
Belmonte-Beitia, Juan ;
Perez-Garcia, Victor M. ;
Vekslerchik, Vadym ;
Torres, Pedro J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)