Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2-x/g-C3N4 heterojunctions: Enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation

被引:67
作者
Li, Kai [1 ]
Zeng, Xiaoqiao [2 ]
Gao, Shanmin [1 ,3 ]
Ma, Lu [4 ]
Wang, Qingyao [1 ]
Xu, Hui [1 ]
Wang, Zeyan [3 ]
Huang, Baibiao [3 ]
Dai, Ying [3 ]
Lu, Jun [2 ]
机构
[1] Ludong Univ, Coll Chem & Mat Sci, Yantai 264025, Peoples R China
[2] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[4] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
基金
中国国家自然科学基金;
关键词
reduced SnO2-x; g-C3N4; heterojunctions; photoelectrochemical; light-emitting diode light source; GRAPHITIC CARBON NITRIDE; COMPOSITE PHOTOCATALYST; HYDROGEN-PRODUCTION; SNO2; NANOPARTICLES; OXYGEN VACANCIES; PERFORMANCE; DEGRADATION; NANOSHEETS; G-C3N4; TIO2;
D O I
10.1007/s12274-016-1088-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Novel SnO2-x/g-C3N4 heterojunction nanocomposites composed of reduced SnO2-x nanoparticles and exfoliated g-C3N4 nanosheets were prepared by a convenient one-step pyrolysis method. The structural, morphological, and optical properties of the as-prepared nanocomposites were characterized in detail, indicating that the aggregation of g-C3N4 nanosheets was prevented by small, well-dispersed SnO2-x nanoparticles. The ultraviolet-visible spectroscopy absorption bands of the nanocomposites were shifted to a longer wavelength region than those exhibited by pure SnO2 or g-C3N4. The charge transfer and recombination processes occurring in the nanocomposites were investigated using linear scan voltammetry and electrochemical impedance spectroscopy. Under 30-W visible-light-emitting diode irradiation, the heterojunction containing 27.4 wt.% SnO2-x exhibited the highest photocurrent density of 0.0468 mA.cm(-2), which is 33.43 and 5.64 times larger than that of pure SnO2 and g-C3N4, respectively. The photocatalytic activity of the heterojunction material was investigated by degrading rhodamine B under irradiation from the same light source. Kinetic study revealed a promising degradation rate constant of 0.0226 min(-1) for the heterojunction containing 27.4 wt.% SnO2-x, which is 32.28 and 5.79 times higher than that of pure SnO2 and g-C3N4, respectively. The enhanced photoelectrochemical and photocatalytic performances of the nanocomposite may be due to its appropriate SnO2-x content and the compact structure of the junction between the SnO2-x nanoparticles and the g-C3N4 nanosheets, which inhibits the recombination of photogenerated electrons and holes.
引用
收藏
页码:1969 / 1982
页数:14
相关论文
共 52 条
[1]   A simple large-scale method for preparation of g-C3N4/SnO2 nanocomposite as visible-light-driven photocatalyst for degradation of an organic pollutant [J].
Akhundi, Anise ;
Habibi-Yangjeh, Aziz .
MATERIALS EXPRESS, 2015, 5 (04) :309-318
[2]   Performance Enhancement of ZnO Photocatalyst via Synergic Effect of Surface Oxygen Defect and Graphene Hybridization [J].
Bai, Xiaojuan ;
Wang, Li ;
Zong, Ruilong ;
Lv, Yanhui ;
Sun, Yiqing ;
Zhu, Yongfa .
LANGMUIR, 2013, 29 (09) :3097-3105
[3]   Enhanced photocatalytic performance of direct Z-scheme BiOCl-g-C3N4 photocatalysts [J].
Bai, Yang ;
Wang, Ping-Quan ;
Liu, Jian-Yi ;
Liu, Xiang-Jun .
RSC ADVANCES, 2014, 4 (37) :19456-19461
[4]   Photoassisted hydrogen production under visible light over NiO/ZnO hetero-system [J].
Belhadi, A. ;
Boumaza, S. ;
Trari, M. .
APPLIED ENERGY, 2011, 88 (12) :4490-4495
[5]   A Simple Strategy for the Preparation of g-C3N4/SnO2 Nanocomposite Photocatalysts [J].
Chen, Lu-Ya ;
Zhang, Wei-De .
SCIENCE OF ADVANCED MATERIALS, 2014, 6 (06) :1091-1098
[6]   In situ construction of an SnO2/g-C3N4 heterojunction for enhanced visible-light photocatalytic activity [J].
Chen, Xi ;
Zhou, Banghong ;
Yang, Shuanglei ;
Wu, Hanshuo ;
Wu, Yuxin ;
Wu, Laidi ;
Pan, Jun ;
Xiong, Xiang .
RSC ADVANCES, 2015, 5 (84) :68953-68963
[7]   Enhanced photoelectrocatalytic performance for degradation of diclofenac and mechanism with TiO2 nano-particles decorated TiO2 nano-tubes arrays photoelectrode [J].
Cheng, Xiuwen ;
Liu, Huiling ;
Chen, Qinghua ;
Li, Junjing ;
Wang, Pu .
ELECTROCHIMICA ACTA, 2013, 108 :203-210
[8]   Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution [J].
Cui, Yanjuan ;
Zhang, Jinshui ;
Zhang, Guigang ;
Huang, Jianhui ;
Liu, Ping ;
Antonietti, Markus ;
Wang, Xinchen .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (34) :13032-13039
[9]   Synproportionation Reaction for the Fabrication of Sn2+ Self-Doped SnO2-x Nanocrystals with Tunable Band Structure and Highly Efficient Visible Light Photocatalytic Activity [J].
Fan, Cong-Min ;
Peng, Yin ;
Zhu, Qing ;
Lin, Ling ;
Wang, Rui-Xia ;
Xu, An-Wu .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (46) :24157-24166
[10]   Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes [J].
Gan, Jiayong ;
Lu, Xihong ;
Wu, Jingheng ;
Xie, Shilei ;
Zhai, Teng ;
Yu, Minghao ;
Zhang, Zishou ;
Mao, Yanchao ;
Wang, Shing Chi Ian ;
Shen, Yong ;
Tong, Yexiang .
SCIENTIFIC REPORTS, 2013, 3