Systems level engineering of Corynebacterium glutamicum - Reprogramming translational efficiency for superior production

被引:38
作者
Becker, Judith [1 ]
Buschke, Nele [1 ]
Buecker, Rene [1 ]
Wittmann, Christoph [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Biochem Engn, D-38106 Braunschweig, Germany
来源
ENGINEERING IN LIFE SCIENCES | 2010年 / 10卷 / 05期
关键词
Codon adaptation; Glucose 6-phosphate dehydrogenase; Metabolic engineering; Phosphoglucoisomerase; Pyruvate dehydrogenase; L-LYSINE PRODUCTION; METABOLIC FLUX ANALYSIS; ESCHERICHIA-COLI; EXPRESSION; FRUCTOSE; GROWTH; DEHYDROGENASE; DISTRIBUTIONS;
D O I
10.1002/elsc.201000008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this study, we replaced the natural start codons of different enzymes in the central carbon metabolism of Corynebacterium glutamicum to influence their activity toward improved production of the feed amino acid lysine. It was found that the translational start codon directly affects the intracellular activity of the encoded enzyme, whereby the common ATG generally led to higher values as compared with the rare variant GTG. This could be exploited to specifically amplify or attenuate enzyme activities in order to redirect carbon flux from undesired, competing pathways toward reactions supporting lysine formation. Replacement of the natural ATG codon by GTG reduced the specific enzyme activity of pyruvate dehydrogenase (PDH) and phosphoglucoisomerase by 60 and 40%, respectively. Vice versa, the activity of glucose 6-phosphate dehydrogenase was increased by 40% by the substitution GTG- > ATG. Implementation of the attenuated pyruvate dehydrogenase in the background of lysine producing C. glutamicum increased product yield by 17%. This was related to a redirection of the metabolic flux toward the supply of the lysine precursor oxaloacetate. The amplified expression of glucose 6-phosphate dehydrogenase by the start codon exchange increased lysine yield by 10%, linked to an increased flux toward NADPH supply in the pentose phosphate pathway.
引用
收藏
页码:430 / 438
页数:9
相关论文
共 27 条
[1]   Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli [J].
Abdel-Hamid, AM ;
Attwood, MM ;
Guest, JR .
MICROBIOLOGY-SGM, 2001, 147 :1483-1498
[2]  
AGER WJ, 1992, J BACTERIOL, V174, P5462
[3]   Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources [J].
Becker, J ;
Klopprogge, C ;
Zelder, O ;
Heinzle, E ;
Wittmann, C .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (12) :8587-8596
[4]   Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum -: over expression and modification of G6P dehydrogenase [J].
Becker, Judith ;
Klopprogge, Corinna ;
Herold, Andrea ;
Zelder, Oskar ;
Bolten, Christoph J. ;
Wittmann, Christoph .
JOURNAL OF BIOTECHNOLOGY, 2007, 132 (02) :99-109
[5]   Metabolic Engineering of the Tricarboxylic Acid Cycle for Improved Lysine Production by Corynebacterium glutamicum [J].
Becker, Judith ;
Klopprogge, Corinna ;
Schroeder, Hartwig ;
Wittmann, Christoph .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (24) :7866-7869
[6]   Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum [J].
Becker, Judith ;
Klopprogge, Corinna ;
Wittmann, Christoph .
MICROBIAL CELL FACTORIES, 2008, 7 (1)
[7]   Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum [J].
Blombach, Bastian ;
Schreiner, Mark E. ;
Moch, Matthias ;
Oldiges, Marco ;
Eikmanns, Bernhard J. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 76 (03) :615-623
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose [J].
Dominguez, H ;
Rollin, C ;
Guyonvarch, A ;
Guerquin-Kern, JL ;
Cocaign-Bousquet, M ;
Lindley, ND .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1998, 254 (01) :96-102
[10]  
Ikeda Masato, 2003, Adv Biochem Eng Biotechnol, V79, P1