Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations

被引:62
作者
Roquejoffre, JM [1 ]
机构
[1] Univ Toulouse 3, CNRS, UMR 6540, MIG,UFR, F-31062 Toulouse, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2001年 / 80卷 / 01期
关键词
Hamilton-Jacobi equations; Aubry-Mather sets; relaxed semi-limits;
D O I
10.1016/S0021-7824(00)01183-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to prove long-time behaviour results for Hamilton-Jacobi equations. For autonomous equations, we give an alternative proof of a convergence theorem obtained by A. Fathi when the equations are posed on a manifold, then extend it to Dirichlet boundary conditions on an open subset. When the equations are time-periodic we prove the convergence in several nontrivial special cases. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:85 / 104
页数:20
相关论文
共 12 条
[1]  
BARLES G, 1987, ESAIM-MATH MODEL NUM, V21, P557
[2]  
BARLES G, IN PRESS SIAM J MATH
[3]  
Barles G., MATH APPL, V17
[4]   A weak KAM theorem and Mather's theory of Lagrangian systems [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (09) :1043-1046
[5]   On convergence of the Lax-Oleinik semi-group [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (03) :267-270
[6]  
FATHI A, ENS LYON LECT NOTES
[7]  
Guckenheimer J, 2013, APPL MATH SCI
[8]  
Lions P.-L., HOMOGENIZATION HAMIL
[9]  
LIONS PL, RES NOTES MATH
[10]   Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations [J].
Namah, G ;
Roquejoffre, JM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (5-6) :883-893