Micromosaic immunoassays

被引:265
作者
Bernard, A [1 ]
Michel, B [1 ]
Delamarche, E [1 ]
机构
[1] IBM Corp, Zurich Res Lab, CH-8803 Ruschlikon, Switzerland
关键词
D O I
10.1021/ac0008845
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Immunoassays are widely used for medical diagnostics and constitute the principal method of detecting pathogenic agents and thus of diagnosing many diseases. These assays, which are most often performed in well plates, would be greatly improved by a practical method to pattern a series of antigens on a flat surface and to localize their binding to many analytes. But no obvious method exists to expose a planar surface successively to a series of antigens and analytes. Here, we present miniaturized mosaic immunoassays based on patterning lines of antigens onto a surface by means of a microfluidic network (mu FN). Solutions to be analyzed are delivered by the channels of a second mu FN across the pattern of antigens. Specific binding of the target antibodies with their immobilized antigens on the surface results in a mosaic of binding events that can readily be visualized in one screening using fluorescence. It is thus possible to screen solutions for antibodies in a combinatorial fashion with great economy of reagents and at a high degree of miniaturization. Such mosaic-format immunoassays are compatible with the sensitivity and reliability required for immunodiagnostic methods.
引用
收藏
页码:8 / 12
页数:5
相关论文
共 27 条
[1]   Printing patterns of proteins [J].
Bernard, A ;
Delamarche, E ;
Schmid, H ;
Michel, B ;
Bosshard, HR ;
Biebuyck, H .
LANGMUIR, 1998, 14 (09) :2225-2229
[2]   Micromachining sensors for electrochemical measurement in subnanoliter volumes [J].
Bratten, CDT ;
Cobbold, PH ;
Cooper, JM .
ANALYTICAL CHEMISTRY, 1997, 69 (02) :253-258
[3]   A CLASS OF COBALT OXIDE MAGNETORESISTANCE MATERIALS DISCOVERED WITH COMBINATORIAL SYNTHESIS [J].
BRICENO, G ;
CHANG, HY ;
SUN, XD ;
SCHULTZ, PG ;
XIANG, XD .
SCIENCE, 1995, 270 (5234) :273-275
[4]   Formation of gradients of proteins on surfaces with microfluidic networks [J].
Caelen, I ;
Bernard, A ;
Juncker, D ;
Michel, B ;
Heinzelmann, H ;
Delamarche, E .
LANGMUIR, 2000, 16 (24) :9125-9130
[5]   Electrochemical analysis in picoliter microvials [J].
Clark, RA ;
Hietpas, PB ;
Ewing, AG .
ANALYTICAL CHEMISTRY, 1997, 69 (02) :259-263
[6]   Microfluidic networks for chemical patterning of substrate: Design and application to bioassays [J].
Delamarche, E ;
Bernard, A ;
Schmid, H ;
Bietsch, A ;
Michel, B ;
Biebuyck, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (03) :500-508
[7]   Patterned delivery of immunoglobulins to surfaces using microfluidic networks [J].
Delamarche, E ;
Bernard, A ;
Schmid, H ;
Michel, B ;
Biebuyck, H .
SCIENCE, 1997, 276 (5313) :779-781
[8]  
FELDKAMP CS, 1996, IMMUNOASSAY
[9]   DNA sequencing - Massively parallel genomics [J].
Fodor, SPA .
SCIENCE, 1997, 277 (5324) :393-&
[10]   LIGHT-DIRECTED, SPATIALLY ADDRESSABLE PARALLEL CHEMICAL SYNTHESIS [J].
FODOR, SPA ;
READ, JL ;
PIRRUNG, MC ;
STRYER, L ;
LU, AT ;
SOLAS, D .
SCIENCE, 1991, 251 (4995) :767-773