Finite groups with subnormal second or third maximal subgroups

被引:7
作者
Lutsenko, Yu. V. [1 ]
Skiba, A. N. [2 ]
机构
[1] Bryansk State Univ, Bryansk, Russia
[2] Gomel State Univ, Gomel, BELARUS
关键词
finite group; second maximal subgroup; third maximal subgroup; subnormal subgroup; Schmidt group; Sylow subgroup; Frattini subgroup; biprimary group; nilpotent group; solvable group; supersolvable group;
D O I
10.1134/S0001434612050094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the precise structure of finite groups all of whose second (or all of whose third) maximal subgroups are subnormal is established.
引用
收藏
页码:680 / 688
页数:9
相关论文
共 20 条
[1]   GENERALIZED CENTER AND HYPER-CENTER OF A FINITE-GROUP [J].
AGRAWAL, RK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 58 (JUL) :13-21
[2]   FINITE-GROUPS SOME OF WHOSE N-MAXIMAL SUBGROUPS ARE NORMAL [J].
ASAAD, M .
ACTA MATHEMATICA HUNGARICA, 1989, 54 (1-2) :9-27
[3]   New characterizations of finite supersoluble groups [J].
BaoJun, L. I. ;
Skiba, Alexander N. .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (05) :827-841
[4]   OVERGROUPS OF 2ND MAXIMAL-SUBGROUPS [J].
FLAVELL, P .
ARCHIV DER MATHEMATIK, 1995, 64 (04) :277-282
[5]  
Gorenstein D., 1980, FINITE GROUP, V2nd
[6]   X-semipermutable subgroups of finite groups [J].
Guo, Wenbin ;
Shum, K. P. ;
Skiba, Alexander N. .
JOURNAL OF ALGEBRA, 2007, 315 (01) :31-41
[7]  
[Го Веньбинь Guo Wenbin], 2009, [Математические заметки, Mathematical Notes, Matematicheskie zametki], V86, P350, DOI 10.4213/mzm8499
[8]   THE STRUCTURE OF FINITE NON-NILPOTENT GROUPS IN WHICH EVERY 2-MAXIMAL SUBGROUP PERMUTES WITH ALL 3-MAXIMAL SUBGROUPS [J].
Guo, Wenbin ;
Legchekova, Helena V. ;
Skiba, Alexander N. .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (07) :2446-2456
[9]   Finite groups with given s-embedded and n-embedded subgroups [J].
Guo, Wenbin ;
Skiba, Alexander N. .
JOURNAL OF ALGEBRA, 2009, 321 (10) :2843-2860
[10]   Cover-avoidance properties and the structure of finite groups [J].
Guo, XY ;
Shun, KP .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 181 (2-3) :297-308