Numerical Analysis of a Fast Finite Element Method for a Hidden-Memory Variable-Order Time-Fractional Diffusion Equation

被引:10
作者
Jia, Jinhong [1 ]
Wang, Hong [2 ]
Zheng, Xiangcheng [3 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国博士后科学基金; 美国国家科学基金会; 中国国家自然科学基金;
关键词
Variable-order time-fractional diffusion equation; Hidden-memory; Finite element method; Optimal-order error estimate; Divide and conquer; DIFFERENCE METHOD; REGULARITY; APPROXIMATION; ALGORITHMS; MODELS; SCHEME;
D O I
10.1007/s10915-022-01820-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a fast finite element scheme to a hidden-memory variable-order time-fractional diffusion equation. Different from the traditional LI methods, a fast approximation to the hidden-memory variable-order fractional derivative is derived to reduce the computational cost of generating coefficients from O(N-2) to O(N log N), where N refers to the number of time steps. We then develop different techniques from the analysis of L1 methods to prove error estimates for the corresponding fast fully-discrete finite element scheme. Furthermore, a fast divide and conquer algorithm is proposed to reduce the complexity of solving the linear systems from O(M N-2) to O(M N log(2 )N) where M stands for the spatial degree of freedom. Numerical experiments are presented to substantiate the theoretical results.
引用
收藏
页数:17
相关论文
共 37 条
[1]  
Adams R. A., 2003, Sobolev Spaces, V140
[2]   HIGH ORDER ALGORITHMS FOR THE FRACTIONAL SUBSTANTIAL DIFFUSION EQUATION WITH TRUNCATED LEVY FLIGHTS [J].
Chen, Minghua ;
Deng, Weihua .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02) :A890-A917
[3]   Algorithms for the fractional calculus: A selection of numerical methods [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD ;
Luchko, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (6-8) :743-773
[4]   TEMPORAL SECOND-ORDER FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME-FRACTIONAL WAVE EQUATIONS [J].
Du, Rui-lian ;
Sun, Zhi-zhong ;
Wang, Hong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (01) :104-132
[5]   Regularity of the solution to fractional diffusion, advection, reaction equations in weighted Sobolev spaces [J].
Ervin, V. J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 278 :294-325
[6]   A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations [J].
Fang, Zhi-Wei ;
Sun, Hai-Wei ;
Wang, Hong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) :1443-1458
[7]   A divide-and-conquer fast finite difference method for space-time fractional partial differential equation [J].
Fu, Hongfei ;
Ng, Michael K. ;
Wang, Hong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) :1233-1242
[8]   Analysis of a hidden memory variably distributed-order space-fractional diffusion equation [J].
Jia, Jinhong ;
Wang, Hong .
APPLIED MATHEMATICS LETTERS, 2022, 124
[9]   A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions [J].
Jia, Jinhong ;
Wang, Hong ;
Zheng, Xiangcheng .
APPLIED NUMERICAL MATHEMATICS, 2021, 163 :15-29
[10]   A fast method for variable-order space-fractional diffusion equations [J].
Jia, Jinhong ;
Zheng, Xiangcheng ;
Fu, Hongfei ;
Dai, Pingfei ;
Wang, Hong .
NUMERICAL ALGORITHMS, 2020, 85 (04) :1519-1540