Periodic solutions of an infinite-dimensional Hamiltonian system

被引:9
作者
Mao, Anmin [1 ]
Luan, Shixia [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Shanghai 273165, Peoples R China
基金
中国国家自然科学基金;
关键词
local linking; periodic solution; variational method;
D O I
10.1016/j.amc.2007.11.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the existence of periodic solutions of the unbounded Hamiltonian system (H) {partial derivative(t)u - Delta(x)u = H(v)(t, x, u, v) -partial derivative(t)v - Delta(x)v = H(u)(t, x, u, v) for (t, x) is an element of R x Omega. Unlike previous work, in our case the energy functional does not satisfy the Palais-Smale conditions. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:800 / 804
页数:5
相关论文
共 7 条
[1]  
Barber B.M., 1995, J CORP FINANC, V1, P283
[2]   Homoclinic solutions of an infinite-dimensional Hamiltonian system [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :289-310
[3]  
Brezis H., 1978, ANN SCUOLA NORM SUP, V5, P225
[4]  
Clement Ph., 1997, ANN SC NORM SUP PISA, VXXIV, P367
[5]  
DING YH, ROCKY MT J MATH
[6]   Periodic solutions of nonautonomous second order Hamiltonian systems [J].
Luan, SX ;
Mao, AM .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (04) :685-690
[7]  
Mawhin J., 1989, CRITICAL POINT THEOR