Surface-Modified Hydroxyapatite Nanoparticle-Reinforced Polylactides for Three-Dimensional Printed Bone Tissue Engineering Scaffolds

被引:35
作者
Yang, Wei-Feng [1 ]
Long, Li [1 ]
Wang, Renxian [2 ]
Chen, Dafu [2 ]
Duan, Shun [1 ]
Xu, Fu-Jian [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Key Lab Carbon Fiber & Funct Polymers, Minist Educ,Beijing Lab Biomed Mat,Beijing Adv In, Beijing 100029, Peoples R China
[2] Beijing Jishuitan Hosp, Beijing Res Inst Traumatol & Orthopaed, Lab Bone Tissue Engn, Beijing 100035, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanocomposite; Surface Modification; Bone Regeneration; Additive Manufacturing; Customized Treatment; OSTEOGENIC DIFFERENTIATION; NANOCOMPOSITES; REGENERATION; NANOFIBERS; DESIGN; MATRIX; CELLS;
D O I
10.1166/jbn.2018.2495
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bone defects represent a clinical challenge that severely impacts the quality of life of affected patients. To match the shape of a bone defect area exactly, additive manufacturing has emerged as a promising technology to produce customized bone regeneration scaffolds for bone defect treatment. In this study, new three-dimensional (3D)-printed poly(L-lactic acid) (PLLA)/hydroxyapatite (HA) composite scaffolds were developed. HA nanoparticles were first modified by a straightforward, economical method. Briefly, HA nanoparticles were modified with dopamine and hexamethylenediamine, and PLLA chains were grafted onto the HA nanoparticles by aminolysis reaction. Then, the PLLA-modified HA nanoparticles were blended with PLLA to form a thermoplastic composite for 3D printing. Due to the high compatibility between the PLLA matrix and PLLA-modified HA nanoparticles, the 3D-printed PLLA/HA scaffolds possess robust mechanical properties and good biocompatibility. This study provides a flexible strategy to fabricate scaffolds for the customized treatment of bone defects.
引用
收藏
页码:294 / 303
页数:10
相关论文
共 45 条
[1]   Estimation of Biocompatibility of Nano-Sized Ceramic Particles with Osteoblasts, Osteosarcomas and Hepatocytes by Static and Time-Lapse Observation [J].
Abe, Shigeaki ;
Seitoku, Eri ;
Lwadera, Nobuki ;
Hamba, Yusuke ;
Yamagata, Shuichi ;
Akasaka, Tsukasa ;
Kusaka, Teruo ;
Lnoue, Satoshi ;
Yawaka, Yasutaka ;
Lida, Junichiro ;
Sano, Hidehiko ;
Yonezawa, Tetsu ;
Yoshida, Yasuhiro .
JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2016, 12 (03) :472-480
[2]   Towards the Design of 3D Fiber-Deposited Poly(ε-caprolactone)/Iron-Doped Hydroxyapatite Nanocomposite Magnetic Scaffolds for Bone Regeneration [J].
De Santis, Roberto ;
Russo, Alessandro ;
Gloria, Antonio ;
D'Amora, Ugo ;
Russo, Teresa ;
Panseri, Silvia ;
Sandri, Monica ;
Tampieri, Anna ;
Marcacci, Maurilio ;
Dediu, Valentin A. ;
Wilde, Colin J. ;
Ambrosio, Luigi .
JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2015, 11 (07) :1236-1246
[3]   RETRACTED: 3D Printing of Bilineage Constructive Biomaterials for Bone and Cartilage Regeneration (Retracted Article) [J].
Deng, Cuijun ;
Yao, Qingqiang ;
Feng, Chun ;
Li, Jiayi ;
Wang, Liming ;
Cheng, Guofeng ;
Shi, Mengchao ;
Chen, Lei ;
Chang, Jiang ;
Wu, Chengtie .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (36)
[4]   In Vitro Biocompability/Osteogenesis and In Vivo Bone Formation Evalution of Peptide-Decorated Apatite Nanocomposites Assisted via Polydopamine [J].
Deng, Yi ;
Sun, Yuhua ;
Bai, Yanjie ;
Gao, Xiang ;
Zhang, Huan ;
Xu, Anxiu ;
Huang, Enyi ;
Deng, Feng ;
Wei, Shicheng .
JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2016, 12 (04) :602-618
[5]   Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials [J].
Duan, Shun ;
Yang, Xiaoping ;
Mei, Fang ;
Tang, Yan ;
Li, Xiaoli ;
Shi, Yuzhou ;
Mao, Jifu ;
Zhang, Hongquan ;
Cai, Qing .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2015, 103 (04) :1424-1435
[6]   Osteocompatibility evaluation of poly(glycine ethyl ester-co-alanine ethyl ester)phosphazene with honeycomb-patterned surface topography [J].
Duan, Shun ;
Yang, Xiaoping ;
Mao, Jifu ;
Qi, Bing ;
Cai, Qing ;
Shen, Hong ;
Yang, Fei ;
Deng, Xuliang ;
Wang, Shenguo .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2013, 101 (02) :307-317
[7]   Role of nanoparticle dispersion and filler-matrix interface on the matrix dominated failure of rigid C60-PE nanocomposites: A molecular dynamics simulation study [J].
Ferdous, Sheikh F. ;
Sarker, Md. Farzad ;
Adnan, Ashfaq .
POLYMER, 2013, 54 (10) :2565-2576
[8]   Tissue Engineered Bio-Blood-Vessels Constructed Using a Tissue-Specific Bioink and 3D Coaxial Cell Printing Technique: A Novel Therapy for Ischemic Disease [J].
Gao, Ge ;
Lee, Jun Hee ;
Jang, Jinah ;
Lee, Dong Han ;
Kong, Jeong-Sik ;
Kim, Byoung Soo ;
Choi, Yeong-Jin ;
Jang, Woong Bi ;
Hong, Young Joon ;
Kwon, Sang-Mo ;
Cho, Dong-Woo .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (33)
[9]   3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics [J].
Goyanes, Alvaro ;
Wang, Jie ;
Buanz, Asma ;
Martinez-Pacheco, Ramon ;
Telford, Richard ;
Gaisford, Simon ;
Basit, Abdul W. .
MOLECULAR PHARMACEUTICS, 2015, 12 (11) :4077-4084
[10]   Characterization of printed PLA scaffolds for bone tissue engineering [J].
Gremare, Agathe ;
Guduric, Vera ;
Bareille, Reine ;
Heroguez, Valerie ;
Latour, Simon ;
L'heureux, Nicolas ;
Fricain, Jean-Christophe ;
Catros, Sylvain ;
Le Nihouannen, Damien .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2018, 106 (04) :887-894