Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans

被引:251
作者
Hills, T [1 ]
Brockie, PJ [1 ]
Maricq, AV [1 ]
机构
[1] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA
关键词
glutamate receptor; dopaminergic signaling; area-restricted search; locomotion; neural circuit; Caenorhabditis elegans; glr-1; glr-2; eat-4; cat-2;
D O I
10.1523/JNEUROSCI.1569-03.2004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Area-restricted search (ARS) is a foraging strategy used by many animals to locate resources. The behavior is characterized by a time-dependent reduction in turning frequency after the last resource encounter. This maximizes the time spent in areas in which resources are abundant and extends the search to a larger area when resources become scarce. We demonstrate that dopaminergic and glutamatergic signaling contribute to the neural circuit controlling ARS in the nematode Caenorhabditis elegans. Ablation of dopaminergic neurons eliminated ARS behavior, as did application of the dopamine receptor antagonist raclopride. Furthermore, ARS was affected by mutations in the glutamate receptor subunits GLR-1 and GLR-2 and the EAT-4 glutamate vesicular transporter. Interestingly, preincubation on dopamine restored the behavior in worms with defective dopaminergic signaling, but not in glr-1, glr-2, or eat-4 mutants. This suggests that dopaminergic and glutamatergic signaling function in the same pathway to regulate turn frequency. Both GLR-1 and GLR-2 are expressed in the locomotory control circuit that modulates the direction of locomotion in response to sensory stimuli and the duration of forward movement during foraging. We propose a mechanism for ARS in C. elegans in which dopamine, released in response to food, modulates glutamatergic signaling in the locomotory control circuit, thus resulting in an increased turn frequency.
引用
收藏
页码:1217 / 1225
页数:9
相关论文
共 66 条
[1]   SPREAD OF INVADING ORGANISMS [J].
ANDOW, DA ;
KAREIVA, PM ;
LEVIN, SA ;
OKUBO, A .
LANDSCAPE ECOLOGY, 1990, 4 (2-3) :177-188
[2]   EFFECTS OF STARVATION AND NEUROACTIVE DRUGS ON FEEDING IN CAENORHABDITIS-ELEGANS [J].
AVERY, L ;
HORVITZ, HR .
JOURNAL OF EXPERIMENTAL ZOOLOGY, 1990, 253 (03) :263-270
[3]   CHEMOSENSORY NEURONS WITH OVERLAPPING FUNCTIONS DIRECT CHEMOTAXIS TO MULTIPLE CHEMICALS IN C-ELEGANS [J].
BARGMANN, CI ;
HORVITZ, HR .
NEURON, 1991, 7 (05) :729-742
[4]   ODORANT-SELECTIVE GENES AND NEURONS MEDIATE OLFACTION IN C-ELEGANS [J].
BARGMANN, CI ;
HARTWIEG, E ;
HORVITZ, HR .
CELL, 1993, 74 (03) :515-527
[5]  
BARNES S, 1994, J EXP BIOL, V189, P37
[6]   Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation [J].
Barria, A ;
Muller, D ;
Derkach, V ;
Griffith, LC ;
Soderling, TR .
SCIENCE, 1997, 276 (5321) :2042-2045
[7]  
BELL W.J., 1991, SEARCHING BEHAV BEHA
[8]   Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter [J].
Bellocchio, EE ;
Reimer, RJ ;
Fremeau, RT ;
Edwards, RH .
SCIENCE, 2000, 289 (5481) :957-960
[9]   AREA-RESTRICTED SEARCH BY THE PLAINS POCKET GOPHER (GEOMYS-BURSARIUS) IN TALLGRASS PRAIRIE HABITAT [J].
BENEDIX, JH .
BEHAVIORAL ECOLOGY, 1993, 4 (04) :318-324
[10]   Addiction, dopamine, and the molecular mechanisms of memory [J].
Berke, JD ;
Hyman, SE .
NEURON, 2000, 25 (03) :515-532