共 20 条
Investigation on hydrogen dissociation pressure, heat of formation and strain energy of metal hydrides
被引:11
|作者:
Kojima, Yoshitsugu
[1
,2
]
Yamaguchi, Masakuni
[2
]
机构:
[1] Hiroshima Univ, Nat Sci Ctr Basic Res & Dev, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 7398530, Japan
[2] Hiroshima Univ, Grad Sch Adv Sci Matter, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 7398530, Japan
关键词:
Dissociation pressure;
Heat of formation;
Metal hydride;
Strain energy;
Bulk modulus;
Hydrogen storage alloy;
THERMODYNAMICS;
ALLOYS;
SYSTEM;
D O I:
10.1016/j.jallcom.2020.155686
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
We analyzed the relation among the dissociation pressure, the heat of formation, and the strain energy of metal hydrides, thermodynamically. Logarithm of hydrogen dissociation pressure PMH of alloy-based metal hydrides with different composition ratio linearly increased with the calculated bulk modulus of the hydrogen storage alloys B-c. The heat of formation Delta H-0 also linearly increased with the calculated bulk modulus of the hydrogen storage alloys Bc. Those hydrogen dissociation pressure and the heat of formation were analyzed by the thermodynamic relations including strain energy. We obtained the following equation [d Delta H-0/dB(c)]/[d(RTln(P-MH))/dB(c)] >1 for metal hydrides having different composition ratio. The value above 1 of this equation was based on the experimental results that the standard entropy change was proportional to the heat of formation of the metal hydride. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文