Combining models in longitudinal data analysis

被引:7
|
作者
Liu, Song [2 ]
Yang, Yuhong [1 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Consumer Banking JPMorgan Chase, Columbus, OH 43240 USA
关键词
Adaptive regression by mixing; Longitudinal data; Model combining; Model selection; Model selection diagnostics; Model selection uncertainty; INFORMATION CRITERION; SELECTION; REGRESSION;
D O I
10.1007/s10463-010-0306-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Model selection uncertainty in longitudinal data analysis is often much more serious than that in simpler regression settings, which challenges the validity of drawing conclusions based on a single selected model when model selection uncertainty is high. We advocate the use of appropriate model selection diagnostics to formally assess the degree of uncertainty in variable/model selection as well as in estimating a quantity of interest. We propose a model combining method with its theoretical properties examined. Simulations and real data examples demonstrate its advantage over popular model selection methods.
引用
收藏
页码:233 / 254
页数:22
相关论文
共 50 条
  • [41] Adaptive efficient robust sequential analysis for autoregressive big data models
    Arkoun, O.
    Brua, J. -Y.
    Pergamenchtchikov, S. M.
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2024, 43 (04): : 432 - 460
  • [42] Bayesian quantile regression for longitudinal data models
    Luo, Youxi
    Lian, Heng
    Tian, Maozai
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (11) : 1635 - 1649
  • [43] Functional Varying Coefficient Models for Longitudinal Data
    Sentuerk, Damla
    Mueller, Hans-Georg
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) : 1256 - 1264
  • [44] Semiparametric modeling and analysis of longitudinal method comparison data
    Rathnayake, Lasitha N.
    Choudhary, Pankaj K.
    STATISTICS IN MEDICINE, 2017, 36 (13) : 2003 - 2015
  • [45] Bayesian analysis of penalized quantile regression for longitudinal data
    Aghamohammadi, A.
    Mohammadi, S.
    STATISTICAL PAPERS, 2017, 58 (04) : 1035 - 1053
  • [46] Marginal models for longitudinal continuous proportional data
    Song, PXK
    BIOMETRICS, 2000, 56 (02) : 496 - 502
  • [47] Bayesian analysis of longitudinal data via empirical likelihood
    Ouyang, Jiangrong
    Bondell, Howard
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 187
  • [48] Quantile causal mediation analysis allowing longitudinal data
    Bind, M. -A.
    VanderWeele, T. J.
    Schwartz, J. D.
    Coull, B. A.
    STATISTICS IN MEDICINE, 2017, 36 (26) : 4182 - 4195
  • [49] SPARSE VARYING COEFFICIENT MODELS FOR LONGITUDINAL DATA
    Noh, Hoh Suk
    Park, Byeong U.
    STATISTICA SINICA, 2010, 20 (03) : 1183 - 1202
  • [50] WEAK INSTRUMENTAL VARIABLES MODELS FOR LONGITUDINAL DATA
    Cai, Zongwu
    Fang, Ying
    Li, Henong
    ECONOMETRIC REVIEWS, 2012, 31 (04) : 361 - 389