Combining models in longitudinal data analysis

被引:7
|
作者
Liu, Song [2 ]
Yang, Yuhong [1 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Consumer Banking JPMorgan Chase, Columbus, OH 43240 USA
关键词
Adaptive regression by mixing; Longitudinal data; Model combining; Model selection; Model selection diagnostics; Model selection uncertainty; INFORMATION CRITERION; SELECTION; REGRESSION;
D O I
10.1007/s10463-010-0306-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Model selection uncertainty in longitudinal data analysis is often much more serious than that in simpler regression settings, which challenges the validity of drawing conclusions based on a single selected model when model selection uncertainty is high. We advocate the use of appropriate model selection diagnostics to formally assess the degree of uncertainty in variable/model selection as well as in estimating a quantity of interest. We propose a model combining method with its theoretical properties examined. Simulations and real data examples demonstrate its advantage over popular model selection methods.
引用
收藏
页码:233 / 254
页数:22
相关论文
共 50 条
  • [31] Combining linear regression models: When and how?
    Yuan, Z
    Yang, YH
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (472) : 1202 - 1214
  • [32] Shrinkage and pretest estimators for longitudinal data analysis under partially linear models
    Hossain, S.
    Ahmed, S. Ejaz
    Yi, Grace Y.
    Chen, B.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (03) : 531 - 549
  • [33] Progressive multi-state models for informatively incomplete longitudinal data
    Chen, Baojiang
    Yi, Grace Y.
    Cook, Richard J.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) : 80 - 93
  • [34] A new local estimation method for single index models for longitudinal data
    Lin, Hongmei
    Zhang, Riquan
    Shi, Jianhong
    Liu, Jicai
    Liu, Yanghui
    JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (03) : 644 - 658
  • [35] Average Estimation of Semiparametric Models for High-Dimensional Longitudinal Data
    Zhao Zhihao
    Zou Guohua
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (06) : 2013 - 2047
  • [36] Analysis of generalized semiparametric mixed varying-coefficients models for longitudinal data
    Sun, Yanqing
    Qi, Li
    Heng, Fei
    Gilbert, Peter B.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2019, 47 (03): : 352 - 373
  • [37] Combining regression and association modelling for longitudinal data on bacterial carriage
    Ekholm, A
    Jokinen, J
    Kilpi, T
    STATISTICS IN MEDICINE, 2002, 21 (05) : 773 - 791
  • [38] Mixtures of semiparametric varying coefficient models for longitudinal data with nonignorable dropout
    Li, Zhi-qiang
    Xue, Liu-gen
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (01): : 125 - 132
  • [39] Can personality predict retirement behaviour? A longitudinal analysis combining survey and register data from Norway
    Morten Blekesaune
    Vegard Skirbekk
    European Journal of Ageing, 2012, 9 : 199 - 206
  • [40] Can personality predict retirement behaviour? A longitudinal analysis combining survey and register data from Norway
    Blekesaune, Morten
    Skirbekk, Vegard
    EUROPEAN JOURNAL OF AGEING, 2012, 9 (03) : 199 - 206