Combining models in longitudinal data analysis

被引:7
|
作者
Liu, Song [2 ]
Yang, Yuhong [1 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Consumer Banking JPMorgan Chase, Columbus, OH 43240 USA
关键词
Adaptive regression by mixing; Longitudinal data; Model combining; Model selection; Model selection diagnostics; Model selection uncertainty; INFORMATION CRITERION; SELECTION; REGRESSION;
D O I
10.1007/s10463-010-0306-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Model selection uncertainty in longitudinal data analysis is often much more serious than that in simpler regression settings, which challenges the validity of drawing conclusions based on a single selected model when model selection uncertainty is high. We advocate the use of appropriate model selection diagnostics to formally assess the degree of uncertainty in variable/model selection as well as in estimating a quantity of interest. We propose a model combining method with its theoretical properties examined. Simulations and real data examples demonstrate its advantage over popular model selection methods.
引用
收藏
页码:233 / 254
页数:22
相关论文
共 50 条
  • [1] Combining models in longitudinal data analysis
    Song Liu
    Yuhong Yang
    Annals of the Institute of Statistical Mathematics, 2012, 64 : 233 - 254
  • [2] ESTIMATION OF FUNCTIONAL SPARSITY IN NONPARAMETRIC VARYING COEFFICIENT MODELS FOR LONGITUDINAL DATA ANALYSIS
    Tu, Catherine Y.
    Park, Juhyun
    Wang, Haonan
    STATISTICA SINICA, 2020, 30 (01) : 439 - 465
  • [3] Bayesian dynamic probit models for the analysis of longitudinal data
    Soyer, Refik
    Sung, Minje
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 68 : 388 - 398
  • [4] The analysis of multivariate longitudinal data using multivariate marginal models
    Cho, Hyunkeun
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 143 : 481 - 491
  • [5] Generalized Quasi-Likelihood Ratio Tests for Semiparametric Analysis of Covariance Models in Longitudinal Data
    Tang, Jin
    Li, Yehua
    Guan, Yongtao
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) : 736 - 747
  • [6] Likelihood analysis of joint marginal and conditional models for longitudinal categorical data
    Chen, Baojiang
    Yi, Grace Y.
    Cook, Richard J.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (02): : 182 - 205
  • [7] Graphical analysis of residuals in multivariate growth curve models and applications in the analysis of longitudinal data
    Hamid, Jemila S.
    Huang, Wei Liang
    von Rosen, Dietrich
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) : 5556 - 5581
  • [8] A strategy for selecting among alternative models for continuous longitudinal data
    Knafl, George J.
    Beeber, Linda
    Schwartz, Todd A.
    RESEARCH IN NURSING & HEALTH, 2012, 35 (06) : 647 - 658
  • [9] Analysis of longitudinal data: Application of hierarchical linear models
    Keller, F
    ZEITSCHRIFT FUR KLINISCHE PSYCHOLOGIE UND PSYCHOTHERAPIE, 2003, 32 (01): : 51 - 61
  • [10] A mixture of transition models for heterogeneous longitudinal ordinal data: with applications to longitudinal bacterial vaginosis data
    Cheon, Kyeongmi
    Thoma, Marie E.
    Kong, Xiangrong
    Albert, Paul S.
    STATISTICS IN MEDICINE, 2014, 33 (18) : 3204 - 3213