Variable Selection in a Log-Linear Birnbaum-Saunders Regression Model for High-Dimensional Survival Data via the Elastic-Net and Stochastic EM

被引:1
|
作者
Zhang, Yukun [1 ]
Lu, Xuewen [1 ]
Desmond, Anthony F. [2 ]
机构
[1] Univ Calgary, Dept Math & Stat, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[2] Univ Guelph, Dept Math & Stat, 50 Stone Rd East, Guelph, ON N1G 2W1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Birnbaum-Saunders distribution; Censored data; Coordinate descent; Iterative least squares; CENSORED-DATA; MAXIMUM-LIKELIHOOD; MOMENT ESTIMATION; RIDGE-REGRESSION; ALGORITHM; PARAMETERS;
D O I
10.1080/00401706.2015.1133457
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Birnbaum-Saunders (BS) distribution is broadly used to model failure times in reliability and survival analysis. In this article, we propose a simultaneous parameter estimation and variable selection procedure in a log-linear BS regression model for high-dimensional survival data. To deal with censored survival data, we iteratively run a combination of the stochastic EM algorithm (SEM) and variable selection procedure to generate pseudo-complete data and select variables until convergence. Treating pseudo-complete data as uncensored data via SEM makes it possible to incorporate iterative penalized least squares and simplify computation. We demonstrate the efficacy of our method using simulated and real datasets.
引用
收藏
页码:383 / 392
页数:10
相关论文
共 22 条
  • [21] Variable selection using Gaussian process regression-based metrics for high-dimensional model approximation with limited data
    Kyungeun Lee
    Hyunkyoo Cho
    Ikjin Lee
    Structural and Multidisciplinary Optimization, 2019, 59 : 1439 - 1454
  • [22] MLRMPA: An R package of multiple linear regression model population analysis based on a cluster sampling technique for variable selection of high dimensional data
    Xie, Meihong
    Deng, Fangfang
    Zhang, Xiaoyun
    Tian, Yueli
    Li, Peizhen
    Zhai, Honglin
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 132 : 124 - 132