Differentially photo-crosslinked polymers enable self-assembling microfluidics

被引:209
作者
Jamal, Mustapha [1 ]
Zarafshar, Aasiyeh M. [1 ]
Gracias, David H. [1 ,2 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA
关键词
TISSUE; HYDROGELS; MICROFABRICATION; MICROSTRUCTURES; DEVICES; FUTURE; RESIST;
D O I
10.1038/ncomms1531
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional regions. Here we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discover that differentially photo-crosslinked SU-8 films spontaneously and reversibly curve on film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enables the self-assembly of cylinders, cubes and bidirectionally folded sheets. We integrate polydimethylsiloxane microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks.
引用
收藏
页数:6
相关论文
共 39 条
[1]   Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities [J].
Andersson, H ;
van den Berg, A .
LAB ON A CHIP, 2004, 4 (02) :98-103
[2]   Self-folding micropatterned polymeric containers [J].
Azam, Anum ;
Laflin, Kate E. ;
Jamal, Mustapha ;
Fernandes, Rohan ;
Gracias, David H. .
BIOMEDICAL MICRODEVICES, 2011, 13 (01) :51-58
[3]   Microassembly based on hands free origami with bidirectional curvature [J].
Bassik, Noy ;
Stern, George M. ;
Gracias, David H. .
APPLIED PHYSICS LETTERS, 2009, 95 (09)
[4]   Block copolymers - Designer soft materials [J].
Bates, FS ;
Fredrickson, GH .
PHYSICS TODAY, 1999, 52 (02) :32-38
[5]   Physics and applications of microfluidics in biology [J].
Beebe, DJ ;
Mensing, GA ;
Walker, GM .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2002, 4 :261-286
[6]   Microfabrication technology for vascularized tissue engineering [J].
Borenstein, JT ;
Terai, H ;
King, KR ;
Weinberg, EJ ;
Kaazempur-Mofrad, MR ;
Vacanti, JP .
BIOMEDICAL MICRODEVICES, 2002, 4 (03) :167-175
[7]   Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer [J].
Bowden, N ;
Brittain, S ;
Evans, AG ;
Hutchinson, JW ;
Whitesides, GM .
NATURE, 1998, 393 (6681) :146-149
[8]   Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers [J].
Burckel, D. Bruce ;
Wendt, Joel R. ;
Ten Eyck, Gregory A. ;
Ginn, James C. ;
Ellis, A. Robert ;
Brener, Igal ;
Sinclair, Michael B. .
ADVANCED MATERIALS, 2010, 22 (44) :5053-+
[9]   Microfluidic scaffolds for tissue engineering [J].
Choi, Nak Won ;
Cabodi, Mario ;
Held, Brittany ;
Gleghorn, Jason P. ;
Bonassar, Lawrence J. ;
Stroock, Abraham D. .
NATURE MATERIALS, 2007, 6 (11) :908-915
[10]   PHOTOCHEMISTRY OF TRIARYLSULFONIUM SALTS [J].
DEKTAR, JL ;
HACKER, NP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1990, 112 (16) :6004-6015