SUB-SUPER SOLUTION METHOD FOR NONLOCAL SYSTEMS INVOLVING THE p(x)-LAPLACIAN OPERATOR

被引:0
|
作者
Dos Santos, Gelson C. G. [1 ]
Figueiredo, Giovany M. [2 ]
Tavares, Leandro S. [3 ]
机构
[1] Univ Fed Para, Fac Matemat, BR-66075110 Belem, Para, Brazil
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[3] Univ Fed Cariri, Ctr Ciencias & Tecnol, BR-63048080 Juazeiro Do Norte, CE, Brazil
关键词
Fixed point argument; nonlocal problem; p(x)-Laplacian; sub-super solutions; POSITIVE SOLUTIONS; VARIABLE EXPONENT; SUPERSOLUTION METHOD; EIGENVALUE PROBLEM; P-LAPLACIAN; EXISTENCE; REGULARITY; MULTIPLICITY; PRINCIPLE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the existence of solutions for nonlocal systems involving the p(x)-Laplacian operator. The approach is based on a new sub-super solution method.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Multiple Solutions for Nonlocal Elliptic Systems Involving p(x)-Biharmonic Operator
    Miao, Qing
    MATHEMATICS, 2019, 7 (08)
  • [22] Multiple solutions for a class of problems involving the p(x)-Laplacian operator
    Vicente de Sousa, Karla Carolina
    Tavares, Leandro S.
    APPLICABLE ANALYSIS, 2022, 101 (15) : 5415 - 5423
  • [23] A sub-super solution method to continuous weak solutions for a semilinear elliptic boundary value problems on bounded and unbounded domains
    Ghanmi, Abdeljabbar
    Alzumi, Hadeel Z.
    Zeddini, Noureddine
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (06): : 3742 - 3757
  • [24] Existence result for a Kirchhoff elliptic system involving p-Laplacian operator with variable parameters and additive right hand side via sub and super solution methods
    Boulaaras, Salah
    Guefaifia, Rafik
    Cherif, Bahri
    Radwan, Taha
    AIMS MATHEMATICS, 2021, 6 (03): : 2315 - 2329
  • [25] A fractional p(x, .)-Laplacian problem involving a singular term
    Mokhtari, A.
    Saoudi, K.
    Chung, N. T.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (01) : 100 - 111
  • [26] Multiple solutions for a parametric Steklov problem involving the p(x)-Laplacian operator
    Abdou, Aboubacar
    Gazibo, Mohamed Karimou
    Marcos, Aboubacar
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2025, (04) : 1 - 27
  • [27] Existence results for a class of nonlocal problems involving the (p1(x), p2(x))-Laplace operator
    Allaoui, Mostafa
    Darhouche, Omar
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (01) : 76 - 89
  • [28] METHOD OF SUB-SUPER SOLUTIONS FOR FRACTIONAL ELLIPTIC EQUATIONS
    Fang, Yanqin
    Tang, De
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 3153 - 3165
  • [29] Existence Result for a Double Phase Problem Involving the (p(x), q(x))-Laplacian Operator
    Ouaarabi, Mohamed El
    Allalou, Chakir
    Melliani, Said
    MATHEMATICA SLOVACA, 2023, 73 (04) : 969 - 982
  • [30] Existence results for a class of nonlocal problems involving p(x)-Laplacian
    Allaoui, Mostafa
    El Amrouss, Abdel Rachid
    Ourraoui, Anass
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (04) : 824 - 832