Image-based Unknown Malware Classification with Few-Shot Learning Models

被引:17
作者
Trung Kien Tran [1 ]
Sato, Hiroshi [1 ]
Kubo, Masao [1 ]
机构
[1] Natl Def Acad, Dept Comp Sci, Yokosuka, Kanagawa, Japan
来源
2019 SEVENTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING WORKSHOPS (CANDARW 2019) | 2019年
关键词
malware classification; few-shot learning; Matching Networks; Prototypical Networks; MalImg; Microsoft Malware Classification;
D O I
10.1109/CANDARW.2019.00075
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Knowing malware types in every malware attacks is very helpful to the administrators to have proper defense policies for their system. It must be a massive benefit for the organization as well as the social if the automatic protection systems could themselves detect, classify an existence of new malware types in the whole network system with a few malware samples. This feature helps to prevent the spreading of malware as soon as any damage is caused to the networks. An approach introduced in this paper takes advantage of One-shot/few-shot learning algorithms in solving the malware classification problems by using some well-known models such as Matching Networks, Prototypical Networks. To demonstrate an efficiency of the approach, we run the experiments on the two malware datasets (namely, MalImg and Microsoft Malware Classification Challenge), and both experiments all give us very high accuracies. We confirm that if applying models correctly from the machine learning area could bring excellent performance compared to the other traditional methods, open a new area of malware research.
引用
收藏
页码:401 / 407
页数:7
相关论文
共 50 条
  • [41] FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION THROUGH MULTITASK TRANSFER LEARNING
    Qu, Ying
    Baghbaderani, Razieh Kaviani
    Qi, Hairong
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [42] Rare Data Image Classification System Using Few-Shot Learning
    Lee, Juhyeok
    Kim, Mihui
    ELECTRONICS, 2024, 13 (19)
  • [43] Decision fusion for few-shot image classification
    Yuan, Tianhao
    Liu, Weifeng
    Yan, Fei
    Liu, Baodi
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2023, 12 (02)
  • [44] Domain Adapted Few-Shot Learning for Breast Histopathological Image Classification
    Mohanta, Anindita
    Roy, Sourav Dey
    Nath, Niharika
    Bhowmik, Mrinal Kanti
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2023, 2023, 14301 : 407 - 417
  • [45] Contrastive prototype learning with semantic patchmix for few-shot image classification
    Dong, Mengping
    Lei, Fei
    Li, Zhenbo
    Liu, Xue
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 142
  • [46] A Bayesian Meta-Learning-Based Method for Few-Shot Hyperspectral Image Classification
    Zhang, Jing
    Liu, Liqin
    Zhao, Rui
    Shi, Zhenwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [47] Few-Shot Transfer Learning for Text Classification With Lightweight Word Embedding Based Models
    Pan, Chongyu
    Huang, Jian
    Gong, Jianxing
    Yuan, Xingsheng
    IEEE ACCESS, 2019, 7 : 53296 - 53304
  • [49] Semantic-Based Few-Shot Classification by Psychometric Learning
    Yin, Lu
    Menkovski, Vlado
    Pei, Yulong
    Pechenizkiy, Mykola
    ADVANCES IN INTELLIGENT DATA ANALYSIS XX, IDA 2022, 2022, 13205 : 392 - 403
  • [50] Few-shot learning for short text classification
    Leiming Yan
    Yuhui Zheng
    Jie Cao
    Multimedia Tools and Applications, 2018, 77 : 29799 - 29810