Image-based Unknown Malware Classification with Few-Shot Learning Models

被引:17
作者
Trung Kien Tran [1 ]
Sato, Hiroshi [1 ]
Kubo, Masao [1 ]
机构
[1] Natl Def Acad, Dept Comp Sci, Yokosuka, Kanagawa, Japan
来源
2019 SEVENTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING WORKSHOPS (CANDARW 2019) | 2019年
关键词
malware classification; few-shot learning; Matching Networks; Prototypical Networks; MalImg; Microsoft Malware Classification;
D O I
10.1109/CANDARW.2019.00075
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Knowing malware types in every malware attacks is very helpful to the administrators to have proper defense policies for their system. It must be a massive benefit for the organization as well as the social if the automatic protection systems could themselves detect, classify an existence of new malware types in the whole network system with a few malware samples. This feature helps to prevent the spreading of malware as soon as any damage is caused to the networks. An approach introduced in this paper takes advantage of One-shot/few-shot learning algorithms in solving the malware classification problems by using some well-known models such as Matching Networks, Prototypical Networks. To demonstrate an efficiency of the approach, we run the experiments on the two malware datasets (namely, MalImg and Microsoft Malware Classification Challenge), and both experiments all give us very high accuracies. We confirm that if applying models correctly from the machine learning area could bring excellent performance compared to the other traditional methods, open a new area of malware research.
引用
收藏
页码:401 / 407
页数:7
相关论文
共 50 条
  • [31] Metric-Based Learning for Nearest-Neighbor Few-Shot Image Classification
    Lee, Min Jun
    So, Jungmin
    35TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2021), 2021, : 460 - 464
  • [32] Attention-Based Contrastive Learning for Few-Shot Remote Sensing Image Classification
    Xu, Yulong
    Bi, Hanbo
    Yu, Hongfeng
    Lu, Wanxuan
    Li, Peifeng
    Li, Xinming
    Sun, Xian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [33] Few-Shot Learning For Remote Sensing Scene Classification
    Alajaji, Dalal
    Alhichri, Haikel S.
    Ammour, Nassim
    Alajlan, Naif
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 81 - 84
  • [34] A Bayesian Meta-Learning-Based Method for Few-Shot Hyperspectral Image Classification
    Zhang, Jing
    Liu, Liqin
    Zhao, Rui
    Shi, Zhenwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [35] Multiscale attention for few-shot image classification
    Zhou, Tong
    Dong, Changyin
    Song, Junshu
    Zhang, Zhiqiang
    Wang, Zhen
    Chang, Bo
    Chen, Dechun
    COMPUTATIONAL INTELLIGENCE, 2024, 40 (02)
  • [36] Few-Shot Learning With Mutual Information Enhancement for Hyperspectral Image Classification
    Zhang, Qiaoli
    Peng, Jiangtao
    Sun, Weiwei
    Liu, Quanyong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [37] ICCL: Independent and Correlative Correspondence Learning for few-shot image classification
    Zheng, Zijun
    Wu, Heng
    Lv, Laishui
    Ye, Hailiang
    Zhang, Changchun
    Yu, Gaohang
    KNOWLEDGE-BASED SYSTEMS, 2023, 266
  • [38] Generalized few-shot learning for crop hyperspectral image precise classification
    Yuan, Hao-tian
    Huang, Ke-kun
    Duan, Jie-li
    Lai, Li-qian
    Yu, Jia-xiang
    Huang, Chao-wei
    Yang, Zhou
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 227
  • [39] Decision fusion for few-shot image classification
    Tianhao Yuan
    Weifeng Liu
    Fei Yan
    Baodi Liu
    International Journal of Multimedia Information Retrieval, 2023, 12
  • [40] Unsupervised Few-Shot Image Classification by Learning Features into Clustering Space
    Li, Shuo
    Liu, Fang
    Hao, Zehua
    Zhao, Kaibo
    Jiao, Licheng
    COMPUTER VISION, ECCV 2022, PT XXXI, 2022, 13691 : 420 - 436