An Affective Interaction System using Virtual Reality and Brain-Computer Interface

被引:3
作者
Chin, Zheng Yang [1 ]
Zhang, Zhuo [1 ]
Wang, Chuanchu [1 ]
Ang, Kai Keng [1 ,2 ]
机构
[1] ASTAR, Inst Infocomm Res, 1 Fusionopolis Way 21-01 Connexis South Tower, Singapore 138632, Singapore
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
来源
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC) | 2021年
关键词
Emotion detection; EEG; Virtual reality (VR); Affective computing (AfC);
D O I
10.1109/EMBC46164.2021.9630045
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Affective Computing is a multidisciplinary area of research that allows computers to perform human emotion recognition, with potential applications in areas such as healthcare, gaming and intuitive human computer interface design. Hence, this paper proposes an affective interaction system using dry EEG-based Brain-Computer Interface and Virtual Reality (BCI-VR). The proposed BCI-VR system integrates existing low-cost consumer devices such as an EEG headband with frontal and temporal dry electrodes for brain signal acquisition, and a low-cost VR headset that houses an Android handphone. The handphone executes an in-house developed software that connects wirelessly to the headband, processes the acquired EEG signals, and displays VR content to elicit emotional responses. The proposed BCI-VR system was used to collect EEG data from 13 subjects while they watched VR content that elicits positive or negative emotional responses. EEG bandpower features were extracted to train Linear Discriminant and Support Vector Machine classifiers. The classification performances of these classifiers on this dataset and the results of a public dataset (SEED-IV) are then evaluated. The results in classifying positive vs negative emotions in both datasets (66% for 2-class) show promise that positive and negative emotions can be detected by the proposed low cost BCIVR system, yielding nearly the same performance on the public dataset that used wet EEG electrodes. Hence the results show promise of the proposed BCI-VR system for real-time affective interaction applications in future.
引用
收藏
页码:6183 / 6186
页数:4
相关论文
共 12 条
[1]   Effectiveness of Immersive Videos in Inducing Awe: An Experimental Study [J].
Chirico, Alice ;
Cipresso, Pietro ;
Yaden, David B. ;
Biassoni, Federica ;
Riva, Giuseppe ;
Gaggioli, Andrea .
SCIENTIFIC REPORTS, 2017, 7
[2]   MEG and EEG data analysis with MNE-Python']Python [J].
Gramfort, Alexandre ;
Luessi, Martin ;
Larson, Eric ;
Engemann, Denis A. ;
Strohmeier, Daniel ;
Brodbeck, Christian ;
Goj, Roman ;
Jas, Mainak ;
Brooks, Teon ;
Parkkonen, Lauri ;
Haemaelaeinen, Matti .
FRONTIERS IN NEUROSCIENCE, 2013, 7
[3]   EMOTION ELICITATION USING FILMS [J].
GROSS, JJ ;
LEVENSON, RW .
COGNITION & EMOTION, 1995, 9 (01) :87-108
[4]  
Gunes Hatice, 2011, Proceedings 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG 2011), P827, DOI 10.1109/FG.2011.5771357
[5]  
Kory J., 2014, The Oxford handbook of affective computing, P371
[6]  
Lang P.J., 2020, A8 U FLOR, DOI [10.1037/t66667-000, DOI 10.1037/T66667-000]
[7]   Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors [J].
Marin-Morales, Javier ;
Luis Higuera-Trujillo, Juan ;
Greco, Alberto ;
Guixeres, Jaime ;
Llinares, Carmen ;
Scilingo, Enzo Pasquale ;
Alcaniz, Mariano ;
Valenza, Gaetano .
SCIENTIFIC REPORTS, 2018, 8
[8]   Recognizing Emotions Induced by Affective Sounds through Heart Rate Variability [J].
Nardelli, Mimma ;
Valenza, Gaetano ;
Greco, Alberto ;
Lanata, Antonio ;
Scilingo, Enzo Pasquale .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2015, 6 (04) :385-394
[9]  
Picard R. W., 1997, Affective Computing
[10]   An EEG Database and Its Initial Benchmark Emotion Classification Performance [J].
Seal, Ayan ;
Reddy, Puthi Prem Nivesh ;
Chaithanya, Pingali ;
Meghana, Arramada ;
Jahnavi, Kamireddy ;
Krejcar, Ondrej ;
Hudak, Radovan .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2020, 2020