Multi-step-ahead Multivariate Predictors: a Comparative Analysis

被引:3
作者
Cescon, Marzia [1 ]
Johansson, Rolf [1 ]
机构
[1] Lund Univ, Dept Automat Control, SE-22100 Lund, Sweden
来源
49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2010年
关键词
SUBSPACE IDENTIFICATION;
D O I
10.1109/CDC.2010.5717179
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The focus of this article is to undertake a comparative analysis of multi-step-ahead linear multivariate predictors. The approach considered for the estimation will be based on geometrically reliable linear algebra tools, resorting to subspace identification methods. A crucial issue is quantification of both bias error and variance affecting the estimate of the prediction for increasing values of the look ahead when only a small number of samples is available. No complete theory is available so far, nor sufficient numerical experience. Therefore, the analysis of this paper aims at shading some lights on the topic providing some insights and help to develop some intuitions.
引用
收藏
页码:2837 / 2842
页数:6
相关论文
共 23 条
[1]  
Anderson B.D.O., 1979, Optimal Filtering
[2]  
[Anonymous], AUTOMATICA
[3]  
[Anonymous], 1999, SYSTEM IDENTIFICATIO
[4]  
[Anonymous], 2008, IFAC P
[5]   MAXIMUM-LIKELIHOOD AND PREDICTION ERROR METHODS [J].
ASTROM, KJ .
AUTOMATICA, 1980, 16 (05) :551-574
[6]  
Chiuso A., 2001, International Journal of Applied Mathematics and Computer Science, V11, P55
[7]   The role of vector autoregressive modeling in predictor-based subspace identification [J].
Chiuso, Alessandro .
AUTOMATICA, 2007, 43 (06) :1034-1048
[8]  
Chiuso A, 2005, IEEE DECIS CONTR P, P4976
[9]   UNIT CANONICAL CORRELATIONS BETWEEN FUTURE AND PAST [J].
HANNAN, EJ ;
POSKITT, DS .
ANNALS OF STATISTICS, 1988, 16 (02) :784-790
[10]  
Holst J., 1977, THESIS LUND I TECHNO