Anti-freezing flexible aqueous Zn-MnO2 batteries working at-35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte

被引:251
作者
Chen, Minfeng [1 ]
Zhou, Weijun [1 ]
Wang, Anran [1 ]
Huang, Aixiang [1 ]
Chen, Jizhang [1 ]
Xu, Junling [2 ]
Wong, Ching-Ping [2 ,3 ]
机构
[1] Nanjing Forestry Univ, Coll Mat Sci & Engn, Nanjing, Peoples R China
[2] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
ZINC; PERFORMANCE; HYDROGELS; CELLULOSE;
D O I
10.1039/d0ta01553a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible aqueous zinc-ion batteries (AZIBs) are promising to satisfy the emerging wearable electronics. However, conventional hydrogel electrolytes are unable to work at subzero temperatures because they inevitably freeze. In this work, a borax-crosslinked polyvinyl alcohol (PVA)/glycerol gel electrolyte is developed, in which glycerol can strongly interact with PVA chains, thus effectively prohibiting the formation of ice crystals within the whole gel network. Thanks to this, the freezing point of this gel electrolyte is below -60 degrees C, which allows it to work in extremely cold environments. Even at -35 degrees C, it still exhibits a high ionic conductivity of 10.1 mS cm(-1) and great mechanical properties. On the basis of this anti-freezing gel electrolyte, a flexible quasi-solid-state aqueous Zn-MnO2 battery is assembled and realizes an impressive energy density of 46.8 mW h cm(-3) (1330 mu W h cm(-2)) at a power density of 96 mW cm(-3) (2.7 mW cm(-2)) at 25 degrees C, outperforming nearly all the reported AZIBs. More importantly, when the temperature is reduced to -35 degrees C, a rather high energy density (25.8 mW h cm(-3), 732 mu W h cm(-2)) can still be achieved, and 53.3% of that value can be retained when the power density is increased to about 10-fold. This battery also shows excellent cycling durability (around 90% capacity retention over 2000 cycles) and great tolerance to various extreme conditions even when the temperature is down to -35 degrees C. These findings provide valuable insights into designing aqueous batteries/supercapacitors that can work in cold climates and high-altitude areas.
引用
收藏
页码:6828 / 6841
页数:14
相关论文
共 75 条
[1]   A Flexible Quasi-Solid-State Bifunctional Device with Zinc-Ion Microbattery and Photodetector [J].
Bi, Songshan ;
Wan, Fang ;
Huang, Shuo ;
Wang, Xiaojun ;
Niu, Zhiqiang .
CHEMELECTROCHEM, 2019, 6 (15) :3933-3939
[2]   An Electrolytic Zn-MnO2 Battery for High-Voltage and Scalable Energy Storage [J].
Chao, Dongliang ;
Zhou, Wanhai ;
Ye, Chao ;
Zhang, Qinghua ;
Chen, Yungui ;
Gu, Lin ;
Davey, Kenneth ;
Qiao, Shi-Zhang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (23) :7823-7828
[3]   A High-Rate and Stable Quasi-Solid-State Zinc-Ion Battery with Novel 2D Layered Zinc Orthovanadate Array [J].
Chao, Dongliang ;
Zhu, Changrong ;
Song, Ming ;
Liang, Pei ;
Zhang, Xiao ;
Nguyen Huy Tiep ;
Zhao, Haofei ;
Wang, John ;
Wang, Rongming ;
Zhang, Hua ;
Fan, Hong Jin .
ADVANCED MATERIALS, 2018, 30 (32)
[4]   Rational Fabrication of Anti-Freezing, Non-Drying Tough Organohydrogels by One-Pot Solvent Displacement [J].
Chen, Fan ;
Zhou, Dan ;
Wang, Jiahui ;
Li, Tianzhen ;
Zhou, Xiaohu ;
Gan, Tiansheng ;
Handschuh-Wang, Stephan ;
Zhou, Xuechang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (22) :6568-6571
[5]   High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte [J].
Chen, Minfeng ;
Chen, Jizhang ;
Zhou, Weijun ;
Xu, Junling ;
Wong, Ching-Ping .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (46) :26524-26532
[6]   Unlocking the Potential of Disordered Rocksalts for Aqueous Zinc-Ion Batteries [J].
Ding, Junwei ;
Du, Zhiguo ;
Li, Bin ;
Wang, Lizhen ;
Wang, Shiwen ;
Gong, Yongji ;
Yang, Shubin .
ADVANCED MATERIALS, 2019, 31 (44)
[7]   Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged High-Energy-Density and Durable Aqueous Zinc-Ion Battery [J].
Fang, Guozhao ;
Zhu, Chuyu ;
Chen, Minghui ;
Zhou, Jiang ;
Tang, Boya ;
Cao, Xinxin ;
Zheng, Xusheng ;
Pan, Anqiang ;
Liang, Shuquan .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (15)
[8]   High-Performance Reversible Aqueous Zn-Ion Battery Based on Porous MnOx Nanorods Coated by MOF-Derived N-Doped Carbon [J].
Fu, Yanqing ;
Wei, Qiliang ;
Zhang, Gaixia ;
Wang, Xiaomin ;
Zhang, Jihai ;
Hu, Yongfeng ;
Wang, Dongniu ;
Zuin, Lucia ;
Zhou, Tao ;
Wu, Yucheng ;
Sun, Shuhui .
ADVANCED ENERGY MATERIALS, 2018, 8 (26)
[9]   Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior High-Rate and Low-Temperature Zinc-Ion Batteries [J].
Geng, Hongbo ;
Cheng, Min ;
Wang, Bo ;
Yang, Yang ;
Zhang, Yufei ;
Li, Cheng Chao .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (06)
[10]   Mechanistic Insights of Zn2+ Storage in Sodium Vanadates [J].
Guo, Xun ;
Fang, Guozhao ;
Zhang, Wenyu ;
Zhou, Jiang ;
Shan, Lutong ;
Wang, Liangbing ;
Wang, Chao ;
Lin, Tianquan ;
Tang, Yan ;
Liang, Shuquan .
ADVANCED ENERGY MATERIALS, 2018, 8 (27)