A LOWER BOUND FOR THE FIRST PASSAGE TIME DENSITY OF THE SUPRATHRESHOLD ORNSTEIN-UHLENBECK PROCESS

被引:7
作者
Thomas, Peter J. [1 ]
机构
[1] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
基金
美国国家科学基金会;
关键词
Leaky integrate and fire neuron; Ornstein-Uhlenbeck process; reliability; synchronization; neural model; lower bound; STOCHASTIC PHASE LOCKINGS; 1ST-PASSAGE-TIME DENSITIES; DIFFUSION-PROCESSES; EXPONENTIAL TRENDS; MARKOV-PROCESSES; ADDITIVE NOISE; MODE-LOCKING; OSCILLATOR; NEURONS; RELIABILITY;
D O I
10.1239/jap/1308662636
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the first passage time density rho(t) for an Ornstein-Uhlenbeck process X (t) obeying dX = -beta X dt + sigma d W to reach a fixed threshold theta from a suprathreshold initial condition x(0) > theta > 0 has a lower bound of the form rho(t) > k exp[- pe(6 beta t)] for positive constants k and p for times t exceeding some positive value u. We obtain explicit expressions for k, p, and u in terms of beta, sigma, x(0), and theta, and discuss the application of the results to the synchronization of periodically forced stochastic leaky integrate-and-fire model neurons.
引用
收藏
页码:420 / 434
页数:15
相关论文
共 33 条
[1]  
[Anonymous], 1994, APPL MATH SCI
[2]   DIFFUSION APPROXIMATION AND FIRST PASSAGE TIME PROBLEM FOR A MODEL NEURON [J].
CAPOCELLI, RM ;
RICCIARDI, LM .
KYBERNETIK, 1971, 8 (06) :214-+
[3]   Mode locking and Arnold tongues in integrate-and-fire neural oscillators [J].
Coombes, S ;
Bressloff, PC .
PHYSICAL REVIEW E, 1999, 60 (02) :2086-2096
[4]  
Cox D., 2017, The theory of stochastic processes
[5]   Spectral analysis of stochastic phase lockings and stochastic bifurcations in the sinusoidally forced vanderPol oscillator with additive noise [J].
Doi, S ;
Inoue, J ;
Kumagai, S .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (5-6) :1107-1127
[6]   Discovering spike patterns in neuronal responses [J].
Fellous, JM ;
Tiesinga, PHE ;
Thomas, PJ ;
Sejnowski, TJ .
JOURNAL OF NEUROSCIENCE, 2004, 24 (12) :2989-3001
[7]   ON THE ASYMPTOTIC-BEHAVIOR OF 1ST-PASSAGE-TIME DENSITIES FOR ONE-DIMENSIONAL DIFFUSION-PROCESSES AND VARYING BOUNDARIES [J].
GIORNO, V ;
NOBILE, AG ;
RICCIARDI, LM .
ADVANCES IN APPLIED PROBABILITY, 1990, 22 (04) :883-914
[8]   Resonance effect for neural spike time reliability [J].
Hunter, JD ;
Milton, JG ;
Thomas, PJ ;
Cowan, JD .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 80 (03) :1427-1438
[9]   INTEGRATE-AND-FIRE MODELS OF NERVE MEMBRANE RESPONSE TO OSCILLATORY INPUT. [J].
Keener, J.P. ;
Hoppensteadt, F.C. ;
Rinzel, J. .
SIAM Journal on Applied Mathematics, 1981, 41 (03) :503-517
[10]   Smoothness of first passage time distributions and a new integral equation for the first passage time density of continuous Markov processes [J].
Lehmann, A .
ADVANCES IN APPLIED PROBABILITY, 2002, 34 (04) :869-887