Ridge Estimation under the Stochastic Restriction

被引:16
作者
Bashtian, M. Hassanzadeh [2 ]
Arashi, M. [1 ]
Tabatabaey, S. M. M. [2 ]
机构
[1] Shahrood Univ Technol, Fac Math, Shahrood, Iran
[2] Ferdowsi Univ Mashhad, Dept Stat, Mashhad, Iran
关键词
Elliptically contoured distribution; Positive-rule shrinkage ridge regression; Preliminary test ridge regression; Ridge regression; Stein-type ridge regression; Stochastic constraints; REGRESSION ESTIMATORS; PERFORMANCE;
D O I
10.1080/03610926.2010.494809
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In linear programming and modeling of an economic system, there may occur some linear stochastic artificial or unnatural manners, which may need serious attentions. These stochastic unusual uncertainty, say stochastic constraints, definitely cause some changes in the estimators under work and their behaviors. In this approach, we are basically concerned with the problem of multicollinearity, when it is suspected that the parameter space may be restricted to some stochastic restrictions. We develop the estimation strategy form unbiasedness to some improved biased adjustment. In this regard, we study the performance of shrinkage estimators under the assumption of elliptically contoured errors and derive the region of optimality of each one. Lastly, a numerical example is taken to determine the adequate ridge parameter for each given estimator.
引用
收藏
页码:3711 / 3747
页数:37
相关论文
共 27 条
[1]  
Anderson T. W., 1984, An introduction to multivariate statistical analysis, V2nd
[2]   Stein-type improvement under stochastic constraints: Use of multivariate Student-t model in regression [J].
Arashi, M. ;
Tabatabaey, S. M. M. .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (14) :2142-2153
[3]   Estimation of parameters of parallelism model with elliptically distributed errors [J].
Arashi, M. ;
Saleh, A. K. Md. E. ;
Tabatabaey, S. M. M. .
METRIKA, 2010, 71 (01) :79-100
[4]  
CHU KC, 1973, IEEE T AUTOMAT CONTR, VAC18, P499
[5]  
Debnath L., 2007, Integral Transforms and Their Applications, V2nd, DOI DOI 10.1201/9781420010916
[6]   The skew elliptical distributions and their quadratic forms [J].
Fang, BQ .
JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 87 (02) :298-314
[7]  
Fang K.-T., 1990, Generalized multivariate analysis
[8]  
Fang KT., 1990, Symmetric Multivariate and Related Distributions
[9]   A SIMULATION STUDY OF SOME RIDGE ESTIMATORS [J].
GIBBONS, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (373) :131-139
[10]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&