The inverse problem of finding the time-dependent diffusion coefficient of the heat equation from integral overdetermination data

被引:49
作者
Kanca, Fatma [2 ]
Ismailov, Mansur I. [1 ]
机构
[1] Gebze Inst Technol, Dept Math, TR-41400 Gebze, Turkey
[2] Kocaeli Univ, Dept Math, TR-41380 Kocaeli, Turkey
关键词
heat equation; inverse problem; nonlocal boundary condition; integral overdetermination condition; time-dependent diffusion coefficient; PARABOLIC EQUATION;
D O I
10.1080/17415977.2011.629093
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article considers the problem of simultaneously determining the time-dependent thermal diffusivity and the temperature distribution in one-dimensional heat equation in the case of nonlocal boundary and integral overdetermination conditions. The conditions for the existence and uniqueness of a classical solution of the problem under considerations are established. A numerical example using the Crank-Nicolson finite-difference scheme combined with an iteration method is presented and the sensitivity of this scheme with respect to noisy overdetermination data is illustrated.
引用
收藏
页码:463 / 476
页数:14
相关论文
共 12 条
[1]  
Cannon J. R., 1992, Meccanica, V27, P85, DOI 10.1007/BF00420586
[2]   DETERMINATION OF A CONTROL PARAMETER IN A PARABOLIC PARTIAL-DIFFERENTIAL EQUATION [J].
CANNON, JR ;
LIN, YP ;
WANG, SM .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1991, 33 :149-163
[3]   Simultaneous determination of unknown coefficients in a parabolic equation [J].
Fatullayev, Afet Golayoglu ;
Gasilov, Nizami ;
Yusubov, Ismihan .
APPLICABLE ANALYSIS, 2008, 87 (10-11) :1167-1177
[4]  
Il'in V.A., 1976, SOV MATH DOKL, V17, P513
[5]  
Ionkin N.I., 1977, Differential Equations, V13, P204
[6]  
Ivanchov M. I., 2001, Ukr. Math. J., V53, P674, DOI [10.1023/A:1012570031242, DOI 10.1023/A:1012570031242]
[7]  
Ivanchov MI., 1993, UKR MATH J, V45, P1186, DOI DOI 10.1007/BF01070965
[8]   On a nonlocal boundary value problem with variable coefficients for the heat equation and the Aller equation [J].
Kozhanov, AI .
DIFFERENTIAL EQUATIONS, 2004, 40 (06) :815-826
[9]   Direct numerical method for an inverse problem of a parabolic partial differential equation [J].
Liao, Wenyuan ;
Dehghan, Mehdi ;
Mohebbi, Akbar .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 232 (02) :351-360
[10]   ON A PROBLEM WITH NONLOCAL BOUNDARY-CONDITION FOR A PARABOLIC EQUATION [J].
MURAVEI, LA ;
FILINOVSKII, AV .
MATHEMATICS OF THE USSR-SBORNIK, 1993, 74 (01) :219-249